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Anomaly detection is about finding patterns in data that do not
conform to expected or normal behaviour.
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Main Challenges

» Most data in the world are unlabelled
TN anomaly labels
Dataset D = {(X(i)7 y*(”)}

i=1
» Annotating large datasets is difficult, time-consuming and
expensive

» Time series have temporal structure/dependencies

X = (Xl,Xg, ...,XT) . x; € R&
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The Principle in a Nutshell

» Based on a Variational Autoencoder!?

Latent Space (z € R%)

Input .
. P . Reconstruction
e.g., time series x T

(HXU bxi) t=1

Encoder
q5(z|x)

Decoder
po(x|z)
X = (X1,Xo, ---7XT)

X € Rdx

1Kingma & Welling, Auto-Encoding Variational Bayes, ICLR'14
2Rezende et al., Stochastic Backpropagation and Approximate Inference in Deep Generative Models, ICML'14
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The Principle in a Nutshell

» Based on a Variational Autoencoder!?

Latent Space (z € R%)

Input
e.g., time series x

Reconstruction
T

(P bx) .y

Decoder
po(x|z)

Encoder
q5(z|x)

X = (Xl,Xz,m,XT)
Xt eRdx

Train a VAE on data with mostly normal patterns;

» It reconstructs well normal data, while it fails to reconstruct

v

anomalous data;
» The quality of the reconstructions is used as anomaly score.

1Kingma & Welling, Auto-Encoding Variational Bayes, ICLR'14
2Rezende et al., Stochastic Backpropagation and Approximate Inference in Deep Generative Models, ICML'14
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Reconstruction Model
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Reconstruction Model
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Denoising Autoencoding Criterion

Corruption process: additive Gaussian noise

p(X[x) =x+n , 1~ Normal(0,02I) u

Vincent et al., Extracting and Composing Robust Features with Denoising Autoencoders, ICML'08

Bengio et al., Denoising Criterion for Variational Auto-Encoding Framework, ICLR'15

comin [ H H
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Reconstruction Model

Learning temporal dependencies

Bidirectional Long-Short Term Memory network

hy = [ﬁﬁ tt]

» 256 units, 128 in each direction
» Sparse regularization, Q(z) = A Z;iil |

Hochreiter et al., Long-Short Term Memory, Neural Computation'97

Graves et al., Bidirectional LSTM Networks for Improved Phoneme Classification and Recognition, ICANN'05

Encoder
Bi-LSTM
Corruption ‘ ‘ a ‘
Input sequence Xl X2 X3
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Reconstruction Model

Variational Latent Space

Variational parameters derived using neural networks

(pz, 02) = Encoder(x)
Sample from the approximate posterior q4(z|x)

Z=py+0,0€ €~ Normal(0,I)

Kingma & Welling, Auto-Encoding Variational Bayes, ICLR'14
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Input sequence

Joao Pereira



Reconstruction Model

Variational Self-Attention

Combines self-attention with variational inference.

T
ctdet - Z atjhj (”Ct: Uct) = NN(Cget)7 Ct ~ Normal(p,ct, 0(2:,51)
J=1

Vaswani et al., Attention is All You Need, NIPS'17
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Reconstruction Model

Another Bi-LSTM.
Decoder = Bi-LSTM([z; ¢|)
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Reconstruction Model

Reconstruction P, by By by iy, by By by
Reconstruction parameters:

T
(IJ‘Xm bxt)t=l
Laplace log-likelihood:
log p(xt|zy) oc [|x¢ — 11
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£(0,6:x™) = ~Ey g, (ahx™), ermit(erx™) [IOg po(x"z.c) ]

+ )\KL

T
Dict, (ao(2lx") lpa(2)) + 1> D, (qg(cdx("))”po(ct))]

t=1

D1, denotes the Kullback-Leibler Divergence
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Reconstruction Term

A

Ve

L8, 6:x™) = ~E g, (i), cpmi(ed) | 10870 (x"2,0)]

+ )\KL

T
Dict. (@o(2/x")1po(2)) + 0> Dice. (@(cex™) [pae) ) ]

=

~ J

TV N
Latent Space KL loss Attention KL loss

Dx1, denotes the Kullback-Leibler Divergence
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Training Framework

Optimization & Regularization

vvyVvVvyy

>

About 270k parameters to optimize
AMS-Grad optimizer?

Xavier weight initialization*
Denoising autoencoding criterion®

Sparse regularization in the encoder Bi-LSTM®
KL cost annealing’

Gradient clipping®

Training executed on a single GPU (NVIDIA GTX 1080 TI)

3Reddi, Kale & Kumar, On the Convergence of Adam and Beyond, ICLR'18
4Bengio et al., Understanding the Difficulty of Training Deep Feedforward Neural Networks, AISTATS'10

5Bengio et al., Denoising Criterion for Variational Auto-Encoding Framework, AAAI'17

6Arpit et al., Why Regularized Auto-Encoders Learn Sparse Representation?, ICML'16

7Bowman, Vinyals et al., Generating Sentences from a Continuous Space, SIGNLL'16

8Beng;io et al., On the Difficulty of Training Recurrent Neural Networks, ICML'13

ao Pereil ICMLA’1
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Anomaly Scores
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Anomaly Scores

» Use the reconstruction error as anomaly score.

Anomaly Score = E, ;. (4/x) [Hx — E[pa(x|z)] HJ

Hx

q¢(z|x) = Normal(p,, o)
7~ qy(zx)

Jodo Pereira ICMLA’18



Anomaly Scores

» Use the reconstruction error as anomaly score.

Anomaly Score = E, . (zx) [Hx — E[pp(x|z;)] HJ

Hx

» Take the variability of the reconstructions into account.

Anomaly Score = —E, .y, (/x) [logp(x|zl)]

/

—~
" Reconstruction Probability”

q¢(z|x) = Normal(p,, o)
7 ~ qu(z[x)

Jodo Pereira ICMLA’18






Time Series Data

Solar PV Generation

0 96 192 288 384
Samples

(Production in a day without clouds)

» Provided by

c|side
Recorded every 15min (96 samples per day)
Data normalized to the installed capacity

Daily seasonality

»
| 2
>
» Unlabelled
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Variational Latent Space

z-space in 2D (Anormal T — 32 (< 96)
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Attention Visualization

Attention Map
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Attention Visualization
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Attention Visualization

Attention Map Examples
— :
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Attention Visualization

Attention Map Examples
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Conclusions & Future Work

Effective on detecting anomalies in time series data;
Unsupervised;
Suitable for both univariate and multivariate data;

Efficient: inference and anomaly scores computation is fast;

vvyyyVvyy

General: works with other kinds of sequential data (e.g.,
text, videos);

v

Exploit the usefulness of the attention maps for detection;

» Make it robust to changes of the normal pattern over time.

Jodo Pereira ICMLA’18
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