
Unsupervised Anomaly Detection in Time Series Data using
Deep Learning

João Pedro Cardoso Pereira

Thesis to obtain the Master of Science Degree in

Electrical and Computer Engineering

Supervisor(s): Prof. Maria Margarida Campos da Silveira
Eng. Francisco Miguel Pereira Gonçalves

Examination Committee

Chairperson: Prof. João Fernando Cardoso Silva Sequeira
Supervisor: Prof. Maria Margarida Campos da Silveira

Member of the Committee: Prof. Jorge dos Santos Salvador Marques

November 2018

ii

Declaration

I declare that this document is an original work of my own authorship and that it fulfills all the

requirements of the Code of Conduct and Good Practices of the Universidade de Lisboa.

iii

iv

Acknowledgements

I would like to thank to my supervisor, Prof. Margarida Silveira, for having proposed this Thesis.

In particular, I would like to thank her for giving me the freedom and the encouragement of pursuing

my own ideas and for supporting them in a constructive way, adding value to them. Moreover, I thank

the opportunity to get involved in the astonishing field of Machine Learning and to work in cutting-

edge research topics such as Bayesian deep learning, deep generative modelling, anomaly detection,

sequence modelling with recurrent neural networks and attention.

I would like to thank C-Side, in the person of its CEO, Eng. Francisco Gonçalves, for having provided

the dataset that made the quest for this Thesis. It was a privilege to develop applied research: to improve

the current state of anomaly detection and, at the same time, to solve a practical problem.

I thank to my family for always having provided me with the conditions for my studies at IST and for

giving a persistent support, all the time, throughout this journey of my life.

I thank to all those who have accompanied me during this challenging period of life, in particular my

colleagues from IST and UCLouvain and my friends outside the university.

I thank to Instituto Superior Técnico for having educated me with the fundamental knowledge at the

core of this Thesis. I also thank to Université catholique de Louvain, where I spent a mobility period as

an exchange student within the Erasmus+ Programme, for the interesting projects and topics covered

in the courses I took there, some of which turned out to be useful for the development of the proposed

approach in this Thesis, such as unsupervised dimensionality reduction and the principles of sparse

representations.

Finally, I would like to jointly thank to my supervisor, C-Side and IST for the opportunity of publishing

the results of my work, so that they can be shared with other researchers and practitioners of the field

and, perhaps, be applied to other domains and problems that I have never thought about.

v

vi

Resumo

Detetar anomalias em séries temporais é um problema importante em áreas como energia, saúde

e segurança. O progresso feito em deteção de anomalias tem sido baseado em abordagens que usam

algoritmos supervisionados de aprendizagem automática que requerem grandes conjuntos de dados

anotados para ser treinados. No entanto, no contexto das aplicações, colecionar e anotar conjuntos

de dados em grande escala é um processo difı́cil, demorado ou até demasiado caro, ao mesmo tempo

que requer conhecimento do assunto por especialistas da área de aplicação. Por isso, a deteção de

anomalias tem sido um grande desafio para investigadores e profissionais.

Esta Tese propõe uma abordagem genérica, não supervisionada e escalável para deteção de

anomalias em séries temporais. A abordagem proposta é baseada num auto-codificador variacional, um

modelo generativo profundo que combina inferência variacional com aprendizagem profunda. Por outro

lado, a arquitetura integra redes neuronais recorrentes para capturar a natureza sequencial das séries

temporais e as suas dependências temporais. Além disso, é introduzido um mecanismo de atenção

para melhorar o desempenho do processo de codificação-descodificação.

Os resultados em dados de geração solar fotovoltaica e de electrocardiogramas mostram a capaci-

dade do modelo proposto para detetar padrões anómalos em séries temporais de diferentes áreas de

aplicação, ao mesmo tempo fornecendo representações estruturadas e expressivas dos dados.

Palavras-chave: Deteção de Anomalias, Séries Temporais, Auto-Codificadores Variacionais,

Redes Neuronais Recorrentes, Mecanismos de Atenção.

vii

viii

Abstract

Detecting anomalies in time series data is an important task in areas such as energy, healthcare

and security. The progress made in anomaly detection has been mostly based on approaches using

supervised machine learning algorithms that require big labelled datasets to be trained. However, in the

context of applications, collecting and annotating such large-scale datasets is difficult, time-consuming

or even too expensive, while it requires domain knowledge from experts in the field. Therefore, anomaly

detection has been such a great challenge for researchers and practitioners.

This Thesis proposes a generic, unsupervised and scalable framework for anomaly detection in time

series data. The proposed approach is based on a variational autoencoder, a deep generative model

that combines variational inference with deep learning. Moreover, the architecture integrates recurrent

neural networks to capture the sequential nature of time series data and its temporal dependencies. Fur-

thermore, an attention mechanism is introduced to improve the performance of the encoding-decoding

process.

The results on solar energy generation and electrocardiogram time series data show the ability of

the proposed model to detect anomalous patterns in time series from different fields of application, while

providing structured and expressive data representations.

Keywords: Anomaly Detection, Time Series, Variational Autoencoder, Recurrent Neural Net-

works, Attention Mechanism

ix

x

Contents

Declaration . iii

Acknowledgements . v

Resumo . vii

Abstract . ix

List of Tables . xiii

List of Figures . xv

List of Acronyms . xvii

1 Introduction 1

1.1 Motivation . 1

1.2 Anomaly Detection Overview . 2

1.3 Related Work . 3

1.4 Why Unsupervised Learning? . 4

1.5 Objectives & Requirements . 5

1.6 Thesis Outline . 5

2 Background & Theory 7

2.1 Autoencoders . 7

2.1.1 Denoising Autoencoders . 8

2.1.2 Sparse Autoencoders . 9

2.1.3 Variational Autoencoders . 9

2.2 Recurrent Neural Networks . 14

2.2.1 Overview . 14

2.2.2 Training . 14

2.2.3 Backpropagation Through Time . 15

2.2.4 Why RNNs? . 16

2.2.5 Long Short-Term Memory Networks . 17

2.3 Sequence to Sequence Models . 19

2.4 Attention Mechanisms . 20

2.5 Autoencoder-based Anomaly Detection . 21

2.5.1 Related Work . 22

xi

3 Proposed Approach 23

3.1 Representation Learning . 24

3.1.1 Overview . 24

3.1.2 Model . 24

3.2 Anomaly Detection . 29

3.2.1 Reconstruction-based Detection . 29

3.2.2 Latent Space-based Detection . 30

3.2.3 Dimensionality of the Latent Space . 31

4 Experiments & Results 33

4.1 Training and Detection Modes . 33

4.2 Solar Energy Generation Dataset: Results & Analysis . 35

4.2.1 Optimization and Regularization . 35

4.2.2 Anomaly Detection Results . 36

4.2.3 Latent Space Analysis . 37

4.2.4 Attention Visualization . 39

4.3 Electrocardiogram Dataset: Results & Analysis . 41

4.3.1 Optimization and Regularisation . 41

4.3.2 Anomaly Detection Results . 42

4.3.3 Latent Space Analysis . 44

4.4 Implementation, Hardware & Computational Efficiency . 45

4.5 Discussion . 45

5 Conclusions 47

5.1 Lessons Learned & Final Remarks . 47

5.2 Summary of Contributions . 48

5.3 Future Work . 49

Bibliography 51

A Publications 59

xii

List of Tables

4.1 Training and validation losses. 36

4.2 Anomaly detection scores for the electrocardiogram dataset (ECG5000). 42

4.3 Comparison of the results with other works using the ECG5000 dataset. 43

4.4 Computational efficiency of training, inference and anomaly scores computation. 45

xiii

xiv

List of Figures

2.1 Illustration of an autoencoder network. 8

2.2 Representation of the VAE as a (directed) graphical model. 10

2.3 Graphical representation of a variational autoencoder. 11

2.4 Encoder and decoder mappings between the input x-space and the z-space of represen-

tations. 11

2.5 Representation of the reparameterization trick. 13

2.6 Representation of an unrolled ”Vanilla” Recurrent Neural Network. 15

2.7 Internal representation of a Long Short-Term Memory Network. 18

2.8 Illustration of an encoder-decoder sequence-to-sequence model. 19

2.9 Example of an Attention Mechanism. 21

3.1 Illustration of the proposed Variational Self-Attention Mechanism (VSAM). 26

3.2 Illustration of the activation functions adopted in the proposed model. 27

3.3 Proposed Variational Bi-LSTM Autoencoder with Variational Self-Attention Mechanism. . 28

4.1 Representation of a daily production curve. 35

4.2 Anomaly scores for some representative sequence examples. 36

4.3 Energy Dataset: Visualization of a 4-day sequence with 2 days of anomalous energy

generation and the corresponding reconstruction parameters. 37

4.4 Latent space visualization of X normal
train in 2D via t-SNE (left) and PCA (right). 37

4.5 Visualization of the latent space in 2D via PCA for the test set (Xtest) containing some

annotated sequences. 38

4.6 Representation of the latent variables components over consecutive training windows. . . 39

4.7 Visualization of the attention maps for the annotated set (Xtest). 40

4.8 Visualization of the context vectors, ct, of the validation set X normal
val 40

4.9 Electrocardiogram Dataset: Class densities per set. 41

4.10 Receiver Operating Characteristic (ROC) curve for the Wasserstein distance-based de-

tection. 43

4.11 Electrocardiogram Dataset: Latent Space Visualization of Xtest in 2D via PCA and t-SNE. 44

xv

xvi

List of Acronyms

AD Anomaly Detection.

AE Autoencoder.

AEVB Auto-Encoding Variational Bayes.

AM Attention Mechanism.

AUC Area Under the Curve.

Bi-LSTM Bidirectional Long Short-Term Memory.

BPTT Backpropagation Through Time.

DBN Dynamic Bayesian Network.

DL Deep Learning.

DR Dimensionality Reduction.

ECG Electrocardiogram.

ELBO Evidence Lower Bound.

GAN Generative Adversarial Network.

GMM Gaussian Mixture Model.

HMM Hidden Markov Model.

IoT Internet of Things.

KL Kullback-Leibler.

KPI Key Performance Indicator.

LSTM Long Short-Term Memory.

MCMC Markov Chain Monte Carlo.

MI Mutual Information.

ML Machine Learning.

NLP Natural Language Processing.

OC-SVM One-Class Support Vector Machine.

PCA Principal Component Analysis.

xvii

PV Photovoltaic.

RE Reconstruction Error.

RNN Recurrent Neural Network.

ROC Receiver Operating Characteristic.

Seq2Seq Sequence-to-Sequence.

SGD Stochastic Gradient Descent.

SVM Support Vector Machine.

t-SNE t-Distributed Stochastic Neighbor Embedding.

UL Unsupervised Learning.

VAE Variational Autoencoder.

VI Variational Inference.

VRAE Variational Recurrent Autoencoder.

VSAM Variational Self-Attention Mechanism.

xviii

Chapter 1

Introduction

This chapter introduces the motivation behind this Thesis and its main subject: Anomaly Detection

(AD). It is presented an overview of related work on AD as well as an explanation of the importance

of unsupervised learning in the context of AD and beyond. Finally, are outlined the objectives and the

requirements to be fulfilled by the proposed approach.

1.1 Motivation

In the age of Big Data, time series are being generated in massive amounts. Nowadays, sensors and

Internet of Things (IoT) devices are ubiquitous and produce data continuously. While the data gathered

by these devices is valuable and can provide meaningful insights, there is a growing need for developing

algorithms that can process these data efficiently. Moreover, in the context of applications such as

energy, healthcare, security, finance and robotics it is important to analyse and monitor the collected

data in order to detect anomalous behaviour that can allow further decisions and actions.

This Thesis is motivated by an application of anomaly detection that arises from the energy field. One

of the key assets of the smart grid is the data it collects. Smart grids are enabling an unprecedented data

acquisition with the installation of sensors and smart devices. With the integration of renewable energy

sources such as solar photovoltaic (PV), it is important to ensure reliability, security and correct operation

in order to promote good performances and a long lifetime of the equipments. Such an amount of data

gathered from smart meters in the grid makes the quest for developing smart monitoring systems that

can detect anomalous behaviour in these systems, trigger alerts and enable maintenance operations.

However, the need for anomaly detection systems goes beyond the energy field. For instance, in

healthcare, the availability of patient monitoring data and the increasing amount of wearable sensors that

collect vital signs (e.g., heart rate, electrocardiogram) makes the quest for developing AD algorithms that

can detect anomalous patterns and provide alerts with minimum delay, thus allowing an early detection

of abnormal vital signs and a clinical intervention when required.

The progress made in Machine Learning (ML) and, in particular, in Deep Learning (DL), allows

to build models that learn directly from data without extensive pre-processing and significant domain

1

knowledge from experts in the field of application. However, a unified framework for AD that can leverage

the power of recent DL models and, at the same time, that could be applied to any kind of time series

data is still to be done.

1.2 Anomaly Detection Overview

Anomaly Detection1 refers to the problem of finding patterns in data that do not conform to expected

or normal behaviour [Chandola et al., 2009]. AD has been approached as a particular instance of a

classification task that aims to distinguish between normal and anomalous observations. These classes

are typically highly imbalanced, being the normal class often predominant relatively to the anomalous

one.

Until a few years ago, the work on anomaly detection was underdeveloped. The quest for developing

novel AD models and to move the state-of-the-art further has emerged from both the industry and the

academia. Nowadays, anomaly detection is an active area of research that is being applied to a wide

range of problems dealing with data of various nature, ranging from time series and text to images

and videos. The applications of AD cover very different areas, such as energy, healthcare, security,

finance and robotics. In particular, to give some examples, AD has been used to detect faults in power

grids [Martinelli et al., 2004], to detect arrhythmia in electrocardiogram time series [Ng et al., 2017],

to detect anomalous behaviour in surveillance videos [Mahadevan et al., 2010], to detect fraud with

credit cards [Aleskerov et al., 1997], to detect abnormal opinions and sentiment patterns [Wang et al.,

2014], to detect anomalous executions in robot assisted feeding [Park et al., 2017], to detect intrusions

in networks [Garcı́a-Teodoro et al., 2009] and to detect unusual segments of text in documents [Guthrie

et al., 2007]. All these problems are particular instances of an anomaly detection task.

Recently, AD has been leveraging on the progress made in Machine Learning and, in particular, in

Deep Learning (DL). In this framework, the work on anomaly detection has been mostly focused on

supervised learning algorithms, which heavily rely on big labelled datasets to be trained. However, in

the context of some applications, such as energy or healthcare, labels are difficult to obtain or even

too expensive, while the annotation process is time-consuming and requires domain knowledge from

experts. Therefore, the application of AD approaches based on supervised models is constrained by

the availability of labelled datasets. Furthermore, in the aforementioned applications of AD, data is

sequential, including time series, text or videos. Some previous AD methods based on ML algorithms

assume that data is independent in time and, hence, they do not consider the temporal dependencies

intrinsic to sequential data.

1Anomaly detection is also referred to as novelty detection or outlier detection. Even though these designations are sometimes
used for slightly different problems, they are often framed as an anomaly detection task.

2

1.3 Related Work

Anomaly Detection is an old problem that has been tackled using different approaches over time.

Chandola et al. [2009] and, more recently, Pimentel et al. [2014] provided an in-depth overview about

the anomaly detection approaches that have been proposed. In particular, Pimentel et al. outlines five

main classes of AD approaches that are briefly described and summarized in this section. For each

method are provided some representative references of its application to AD tasks.

The first class integrates the probabilistic approaches and the principle behind them consists on

estimating the probability density function (pdf) of the data and then the anomalies correspond to the re-

gions with low probability mass. These methods usually make an independence assumption of the data

in time or make specific assumptions about their generation process, such as assuming it is generated

from a weighted mixture of Gaussian distributions (GMM) [Song et al., 2007]. Independent Component

Analysis (ICA) was also proposed for AD [Hansen et al., 2002]. These techniques require a considerably

large amount of data, specially when dealing with high-dimensions where the curse of dimensionality

comes into play. For time series data, state-space models are usually employed. These models assume

that the observations are generated by an underlying hidden state, which may evolve over time. The

two most common state-space models are the Hidden Markov Model (HMM) [Yeung and Ding, 2003]

and the Kalman filter [Lee and Roberts, 2008], which are both particular instances of Dynamic Bayesian

Networks (DBN). However, as pointed out by Bengio et al. [2015a], these models often assume simple

state transition structures (e.g., linear models in the case of the Kalman filter) or simple internal state

structures (e.g., in HMMs the state space consists of a single set of mutually exclusive states).

The second class regards distance-based approaches that include Clustering [He et al., 2003; Bar-

bará et al., 2002] or Nearest Neighbour [Boriah et al., 2008; Angiulli and Pizzuti, 2002] methods. These

approaches require well-defined distance measures to compute the similarity between data points. They

assume that normal data points have close neighbours within the training set of normal examples, while

anomalous data points are located far from those normal points. The more away from the normal data

a given test sample is, the more likely it is to be an anomaly. Nevertheless, distance-based approaches

sometimes require a significant amount of comparisons between data points, what compromises their

scalability to large and high-dimensional datasets. This class of methods is prone to suffer from the curse

of dimensionality, due to the concentration of the distances phenomenon in high-dimensional spaces.

The third class concerns reconstruction-based approaches and these are connected with neural

networks and dimensionality reduction [Hawkins et al., 2002; Williams et al., 2002; Shyu et al., 2003].

The prominent model of this class is the Autoencoder (described in detail in section 2.1), that learns

a low-dimensional representation of normal data and then reconstructs it. The reconstruction scores

are used as a measure of normality. Considering conventional (feed-forward and deterministic) autoen-

coders, this reconstruction-based approach is not particularly suited for sequential data such as time

series, since it does not take into account the dependencies between the inputs.

The fourth class consists of domain-based approaches whose principles differ from the previous

methods. Rather than modelling the structure of the data itself, they try to find a boundary around

3

normal data (in other words, the domain of the data). Unseen examples are classified as normal or

anomalous depending on whether they are inside or outside the boundary. This class includes, for

instance, One-Class Support Vector Machines (OC-SVMs) [Schölkopf et al., 2001; Heller et al., 2003].

The effectiveness of domain-based approaches often depend on the choice of good parameters, for

instance the kernel used in the SVM.

The fifth and last main group of AD methods is based on information-theoretic approaches. These

techniques are built upon the principles of information theory and make use of concepts such as the

entropy [He et al., 2005], the Mutual Information (MI) or the Kullback-Leibler (KL) divergence [Gamon,

2006]. The core idea behind them is that anomalous data has a different information content of normal

data. In this context, entropies are computed (globally or locally) and their changes are used to find

anomalous data. However, these approaches require choosing particular metrics that may not be suited

for some kinds of anomalies, specially short-term ones.

1.4 Why Unsupervised Learning?

The astonishing success of Deep Learning has been achieved mainly with supervised machine learn-

ing algorithms using deep neural networks [Hinton et al., 2012; Krizhevsky et al., 2012]. For training

these algorithms, big labelled datasets are required in order to attain good performances and state-

of-the-art results. However, as previously mentioned, such large-scale labelled datasets are difficult to

obtain and the annotation process requires domain knowledge from experts.

Despite the success of supervised learning in recent years, previously, unsupervised learning at-

tained remarkable results. During the early days of the DL era, for instance, Hinton and Salakhutdinov

[2006] showed impressive results in dimensionality reduction using autoencoders. Afterwards, the suc-

cess of supervised learning in key problems, such as speech recognition and image classification, has

concentrated the interest of the research community that developed and improved it significantly, while

unsupervised learning was partially disregarded.

Recently, there has been a renewed interest in unsupervised learning that is foreseen to play an

important role in the future of machine learning [LeCun, Bengio, and Hinton, 2015]. The explosion of

work in unsupervised machine learning was seamlessly connected with the introduction of two novel

deep generative models in particular, namely Variational Autoencoders (VAEs) [Kingma and Welling,

2013] and Generative Adversarial Networks (GANs) [Goodfellow et al., 2014].

Still, unsupervised learning is a very challenging field that often under-performs supervised learning

in a variety of tasks. In what regards AD, the approaches based on ML algorithms are often very focused

on supervised models, even though there is a recent trend of adopting unsupervised approaches. The

lack of labelled data is, more and more, making the quest for improving unsupervised learning models,

so that they can be applied to other problems and tasks that where sometimes disregarded in the past.

Finally, it is interesting to note that the human way of reacting to unexpected observations of the

world, that is to say, the human way of performing AD, is largely unsupervised. A naı̈ve example,

inspired by another one that Yann LeCun uses to give about unsupervised learning [LeCun, 2018],

4

goes as follows. A newborn is often confused about the environment it perceives in its early days of

life. However, after experiencing the novel world for a while and collecting some observations of the

environment, and still without any sort of supervision, a baby is able to build, that is to say, to learn, its

own idea of normality and soon starts recognizing what is familiar, likely or expected. When it looks at an

unseen face it often becomes upset, since it is not able to recognize it as familiar. The baby has learned

its own representation of normal and its now using it as a reference to evaluate unexpected and unseen

observations of the world. Just by looking at it, without being told of whether or not it knows someone, it

is able to take a reaction. The intuition behind this naı̈ve example frames the principles of unsupervised

anomaly detection, which will be the main focus of this Thesis.

Since the dataset that motivates this Thesis is fully unlabelled, this Thesis aims to contribute to

improve unsupervised anomaly detection.

1.5 Objectives & Requirements

This thesis aims to design and develop a general framework for anomaly detection in time series data.

The proposed methodology should be generic, so that it can be applied to any kind of time series (univari-

ate and multivariate, predictable and unpredictable, periodic and aperiodic) and, desirably, to other kinds

of sequential data, such as text and videos. Furthermore, it should be unsupervised and not require

anomaly labels. Since time series are sequences, the proposed approach should consider the temporal

dependencies intrinsic to time series data. It should also be scalable to large-scale datasets and com-

putationally efficient to allow fast and real-time detection. Finally, it should introduce a novel framework

for anomaly detection in time series data and, thus, add a new contribution relatively to previous works.

Developing an approach such that all the aforementioned requirements are fulfilled is both the objec-

tive and the major challenge of this Master Thesis.

1.6 Thesis Outline

This Thesis is organized in five chapters. In Chapter 2 is reviewed the relevant background on

deep learning (including autoencoders, recurrent neural networks, sequence to sequence models and

attention mechanisms), are explained the principles behind autoencoder-based AD and is presented a

brief overview of related recent work using this class of models. Chapter 3 introduces the proposed

approach for anomaly detection, which relies on two fundamental stages: representation learning and

detection. The representation learning model, based on an autoencoder, is described in detail and

afterwards are proposed different detection strategies. Chapter 4 presents the results obtained using

two datasets coming from different fields: energy and healthcare. These results are, then, analysed in

detail and discussed. Finally, in Chapter 5, are presented the conclusions and insights provided by the

results, are discussed several lines of future work and are summarized the main contributions of this

Thesis. This Thesis also includes an appendix with the publications made during its execution.

5

6

Chapter 2

Background & Theory

The revolution will not be supervised.

Yann LeCun

2.1 Autoencoders

Autoencoders (AE) [Rumelhart, Hinton, and Williams, 1986; Bourlard and Kamp, 1988] are neural

networks trained in an unsupervised fashion that aim to reconstruct their input. They consist of two

parts: an encoder and a decoder. The encoder is a function f that maps input data x ∈ Rdx to a latent

code/representation z ∈ Rdz . It has the form:

z = f(x) = sf (Wx + bz) (2.1)

where sf denotes an activation function (often non-linear), W ∈ Rdz×dx is a weight matrix and bz ∈ Rdz

is a bias vector.

The decoder is function g that maps back from latent code to input space (reconstruction).

x̂ = g(z) = g(f(x)) = sg (W′z + bx) (2.2)

where sg is the activation function of the decoder, W′ ∈ Rdx×dz is a weight matrix and bx ∈ Rdx is a bias

vector. Sometimes, the weight matrix of the decoder is the transpose of the encoder weight matrix, i.e.

W′ = W>. In that case the autoencoder has tied weights.

The autoencoders training procedure consists of finding the set of parameters θ = (W,bz,bx) that

minimize a loss function, L(x, g(f(x))), which measures the quality of the reconstructions and, thus, by

making the output reconstruction x̂ as close as possible to the original input x. A typical choice for the

loss is the mean squared error.

L(x, g(f(x))) = ‖x− x̂‖22 (2.3)

7

Autoencoders can be under-complete, i.e. their latent code z has a lower dimensionality than the input

space x and, in that case, they are forced to learn a compressed representation of the data. In this

framework, an autoencoder can be used for dimensionality reduction (DR) tasks. In fact, if the autoen-

coder has just one hidden layer and if the functions are linear and the loss is the mean squared error, an

autoencoder is provably equivalent to Principal Component Analysis (PCA), while the weights to the K

hidden units will span the same subspace as the first K principal components of the data [Murphy, 2012;

Goodfellow et al., 2016]. Furthermore, if the activation functions are non-linear, autoencoders can find

non-linear representations of the data and, therefore, they are a powerful generalization of PCA that has

experimentally demonstrated impressive results in the past [Hinton and Salakhutdinov, 2006].

x

Rdx

z

Rdz

(Latent Space)

x̂Input Reconstruction

Encoder Decoder

Figure 2.1: Illustration of an autoencoder network.

2.1.1 Denoising Autoencoders

Denoising autoencoders (DAEs) [Vincent et al., 2008; Bengio et al., 2013] learn to reconstruct an

input data point, x, from a corrupted version of it, x̃. The process starts by corrupting the initial input

x into x̃ by means of a stochastic mapping p(x̃|x). The corrupted input in then mapped to a hidden

representation/code similarly to a conventional autoencoder, z = f(x̃), from which the reconstruction is

derived, x̂ = g(z). The training objective usually consists on minimizing a loss function L(x, g(f(x̃))).

The corruption process at the input level typically consists on adding Gaussian noise to the inputs, as in

equation 2.4, or on randomly setting a fraction of the inputs to zero (zero-masking noise).

x̃ ∼ p(x̃|x), p(x̃|x) = Normal(x|0,σ2
nI) (2.4)

The denoising autoencoding procedure allows the autoencoder to be robust to data with white noise

and to learn only the meaningful patterns of the data, while learning useful and expressive feature

representations.

8

2.1.2 Sparse Autoencoders

The sparse autoencoder is an autoencoder whose loss function includes a sparsity penalty (Ω) on

the code layer. By doing so, the autoencoder training objective aims to minimize a reconstruction loss,

while promoting sparsity in the code layer.

L(x, g(f(x))) + Ω(z) (2.5)

Sparse autoencoders are usually employed to learn features for another task, such as supervised clas-

sification, that depends on these (sparse) features. An autoencoder that has been regularized to be

sparse is likely to respond to unique statistical features of the dataset it has been trained on, rather than

simply acting as an identity function [Goodfellow et al., 2016, Ch. 14]. By doing so, a training objective

that includes both a reconstruction term and a sparsity penalty leads to a model that has learned useful

features as a by-product.

There are various forms of sparsity that can be adopted. For instance, the sparsity penalty can be

defined as the `1-norm of the code z, weighted by a parameter λ. In this case,

Ω(z) = λ

dz∑

i=1

|zi| (2.6)

2.1.3 Variational Autoencoders

Preliminaries

Consider the latent variable model of parameter θ with the following factorization:

pθ(x, z) = pθ(z)pθ(x|z) (2.7)

where x is the observed variable and z is the latent variable. In the context of Bayesian learning, pθ(z)

is often referred to as the prior distribution over z, since it is not conditioned on any observations, and

pθ(x|z) is the likelihood of the observation x, given the latent code z. In this framework, the inference

problem refers to the computation of the posterior distribution pθ(z|x), that is to say, the conditional

density of the latent variables given observations. The posterior distribution can be written as:

pθ(z|x) =
pθ(x, z)

pθ(x)
(2.8)

where pθ(x) is the marginal distribution over the observed variables (also referred to as marginal likeli-

hood or model evidence). The model evidence is obtained by marginalizing out the latent variables from

the joint probability distribution over both the observed variables and the latent variables, pθ(x, z), as in

equation 2.9.

pθ(x) =

∫

z

pθ(x, z)dz (2.9)

One of the main difficulties in this kind of probabilistic graphical models is that the evidence integral is

9

intractable by analytical methods and does not have a closed form solution. For solving this problem can

be adopted several approximate inference techniques, such as Variational Inference (VI) and Markov

Chain Monte Carlo (MCMC). In the context of Variational Autoencoders, variational inference is often

employed to solve the inference problem and it does so by turning it into an optimization one.

Variational inference aims to find a variational approximation qφ(z|x) of the intractable true posterior

distribution pθ(z|x) by minimizing the Kullback-Leibler (KL) divergence between both. The KL-divergence

(DKL) is a measure of dissimilarity between distributions and, thus, the lower the divergence the higher

the similarity between the distributions. If q and p are two continuous probability distribution, the KL-

divergence is given by:

DKL(q‖p) =

∫

z

q(z) log
q(z)

p(z)
dz (2.10)

The optimization problem aims to find the approximate posterior parameters φ such that the KL-divergence

between qφ(z|x) and pθ(z|x) is minimized:

q∗(z) = argmin
φ

DKL

(
qφ(z|x)‖pθ(z|x)

)
(2.11)

Overview

The Variational Autoencoder (VAE) [Kingma and Welling, 2013; Rezende et al., 2014] is a deep

generative model rooted in Bayesian inference that constrains the code z of the autoencoder to be a

random variable distributed according to a prior distribution pθ(z). The VAE can be analysed from a

graphical model perspective, with the representation illustrated in Figure 2.2.

N

z

x

φ θ

Figure 2.2: The VAE as a (directed) graphical model.

Since the true posterior pθ(z|x) is intractable for a continuous latent space z, the previously described

Variational Inference technique is often used to solve this intractable posterior inference problem in a

tractable way. Therefore, it is introduced a variational approximation qφ(z|x) of the true posterior pθ(z|x),

which if often called the encoder or recognition/inference network. The parameters of the encoder, φ, are

called the variational parameters and can be derived using deep neural networks. The prior distribution

over the latent variables, pθ(z), is often a standard isotropic Normal (diagonal co-variance matrix, with

Σp = I). In that case, the encoder is designed to output the mean, µz, and the standard deviation, σz,

10

parameters of the approximate posterior distribution:

(µz,σz) = Encoderφ(x) (2.12)

qφ(z|x) = Normal(µz,σzI) (2.13)

The decoder network (generative model), pθ(x|z), parametrizes the likelihood of data x, given the latent

code z. The decoding distribution is usually a multivariate Normal or Bernoulli, depending on the type

of data being continuous or binary, respectively.

Figure 2.3 shows a graphical representation of a variational autoencoder.

x z

µz

σz

Variational Latent Space

µx

σ2x

Input

Encoder
qφ(z|x)

Decoder
pθ(x|z)

Figure 2.3: Graphical representation of a variational autoencoder.

Figure 2.4 illustrates the encoder and decoder mappings in a variational autoencoder.

Rdx

x−space

Prior
pθ(z)

z−space

Rdz

Encoder
qφ(z|x)

Decoder
pθ(x|z)

Figure 2.4: Encoder and decoder mappings between the input x-space and the z-space of representa-
tions.

11

Training Objective

The optimization objective of the VAE, similarly to other variational techniques, is the evidence lower

bound (ELBO), also referred to as variational lower bound. Given an inference model qφ(z|x), the ELBO

can be derived as follows:

log pθ(x) = Eqφ(z|x)
[

log pθ(x)
]

(2.14)

= Eqφ(z|x)

[
log

pθ(x|z)pθ(z)

pθ(z|x)

]
(Bayes Rule) (2.15)

= Eqφ(z|x)

[
log

pθ(x|z)pθ(z)

pθ(z|x)

qφ(z|x)

qφ(z|x)

]
(2.16)

= Eqφ(z|x)
[

log pθ(x|z)
]
− Eqφ(z|x)

[
log

qφ(z|x)

pθ(z)

]
+ Eqφ(z|x)

[
log

qφ(z|x)

pθ(z|x)

]
(2.17)

= Eqφ(z|x)
[

log pθ(x|z)
]
−DKL

(
qφ(z|x)‖pθ(z)

)
︸ ︷︷ ︸

=LELBO(θ,φ;x)

+DKL

(
qφ(z|x)‖pθ(z|x)

)
︸ ︷︷ ︸

≥0

(2.18)

In equation 2.18, the first term is the Evidence Lower Bound and the second term is the Kullback-Leibler

divergence (DKL) between the approximate posterior qφ(z|x) and the true posterior pθ(z|x). Since the

KL-divergence is always non-negative, the ELBO is a lower bound on the log-likelihood of the data.

LELBO(θ, φ; x) = log pθ(x)−DKL (qφ(z|x)‖pθ(z|x)) (2.19)

≤ log pθ(x)

The VAE training objective is to maximize the ELBO and, therefore, to minimize the loss function given

by equation 2.20.

LVAE(θ, φ; x) = −Eqφ(z|x)
[

log pθ (x|z)
]

+DKL(qφ (z|x) ‖pθ(z)) (2.20)

The Reparameterization Trick

The VAE computational graph includes a probabilistic node that refers to the sampling process of the

latent variable from the approximate posterior. However, when training the model with Stochastic Gradi-

ent Descent this leads to an issue, since it is not possible to differentiate the objective with respect to the

variational parameters φ because the gradients can not be backpropagated through the latent variable

z. Therefore, Kingma and Welling [2013] and Rezende et al. [2014] proposed the reparametrization trick

for overcoming this problem. This trick consists on sampling an auxiliary (and external) random variable

ε from a fixed distribution, Normal(0, I), and then apply a variable transformation as in equation 2.21.

z = µ+ σ � ε, ε ∼ Normal(0, I) (2.21)

where µ and σ are the variational parameters derived from the encoder.

Figure 2.5 illustrates the computational graph behind the reparametrization trick.

12

Original form

z ∼ qφ(z|x)

f

φ x

Reparametrized form

z = g(φ,x, ε)

f

φ x ε

∼ p(ε)

Figure 2.5: Representation of the reparameterization trick. The parameters φ of the approximate poste-
rior affect the objective f by means of the latent variable z ∼ qφ(z|x). Since it is not possible to differen-
tiate f with respect to φ because the gradients can not be backpropagated through the random variable
z, it is introduced an external random variable ε sampled from a fixed distribution p(ε) = Normal(0, I)
and then it is executed a simple variable transformation.

Optimization of the ELBO

The optimization of the evidence lower bound is performed using a stochastic optimization procedure

proposed in the VAE original paper by Kingma and Welling [2013]. They called this algorithm Auto-

Encoding Variational Bayes (AEVB).

Algorithm 1 Auto-Encoding Variational Bayes Algorithm
Input:
X : Dataset
qφ(z|x): Inference/recognition Model
pθ(x, z): Generative Model

Output:
θ, φ: Learned parameters

(θ, φ)← Initialise parameters
while SGD not converged do
M∼ X (Draw a random mini-batch of data)
ε ∼ p(ε) (Random noise for every point within the mini-batchM)
Compute L(θ, φ;M, ε) and its gradients ∇L(θ, φ;M, ε)
Update θ and φ using a SGD optimizer

end while

The stochastic optimization procedure in the AEVB algorithm is two-fold, since the noise introduced by

either the random choice of a mini-batchM and by the sampling step ε ∼ p(ε).
Given a dataset X =

{
x(n)

}N
n=1

composed by N independent and identically distributed examples, the

global evidence lower bound objective is the sum over the evidence lower bounds of all individual data

points x(n) within X .

LELBO(X) =
∑

x(n)∈X
LELBO(x(n)) (2.22)

13

2.2 Recurrent Neural Networks

2.2.1 Overview

Feed-forward neural networks and several other machine learning models assume data is indepen-

dent and identically distributed (i.i.d.) in time or in space. In many applications involving time series, text

and videos, data is sequential and, therefore, this assumption does not hold.

Recurrent Neural Networks (RNNs) are powerful sequence learners that overcome this limitation by

introducing memory into the network. They receive as input a sequence of dx-dimensional vectors

x = (x1,x2, ...,xT) and process them one at a time. For each input vector xt, the recurrent neural

network updates its memory and produces a hidden state ht ∈ Rdh . This hidden state is a summary of

the sequence of vectors seen by the network up to timestep t, i.e. (x1,x2, ...,xt). The main feature of

recurrent networks is the feedback connection between hidden units across time that stablish a recur-

rence mechanism. This recurrence mechanism defines how the hidden states ht are updated. At each

time step t, the hidden state ht of a RNN in its simplest form (”vanilla” RNN) is updated based on the

current input (xt) and the hidden state at the previous timestep (ht−1), as in equation 2.23.

ht = f(Uxt + Wht−1 + b) (2.23)

In equation 2.23, f is typically a non-linear function such as the sigmoid or the tanh. U ∈ Rdh×dx and

W ∈ Rdh×dh are weight matrices to be learned that describe the input-to-hidden and the hidden-to-

hidden connections and b ∈ Rdh is a bias vector. Moreover, the initial hidden state h0 is often set to 0.

The RNN can produce an output vector at each timestep (ŷt ∈ Rdy).

ŷt = g(Vht + c) = g(ot) (2.24)

In equation 2.24, V ∈ Rdy×dh is a weight matrix that describes the hidden-to-output connections and

c ∈ Rdy is a bias vector. The function g used to produce the output ŷt depends on the application.

For instance, in a classification problem, g is often the softmax function, which produces a probability

distribution over classes. In a regression task, g can be a fully connected neural network.

All the parameters (weights and biases) are shared between all time steps.

2.2.2 Training

RNNs training is often executed using mini-batch Stochastic Gradient Descent (SGD) algorithms.

These algorithms use a random subset of training examples (a mini-batch,M) to compute the gradients

and update the weights, one at a time. By considering a mini-batch of examples, training is more stable

and consistent relatively to the ”online” setting, which updates the gradients using only a single example,

and more efficient than the full-batch setting, which needs to go through all examples before performing

an update. Finally, the matrix-vector multiplications behind RNNs can be performed as matrix-matrix

multiplications using mini-batches of samples and these can be efficiently deployed on GPUs. In a

14

ht

ŷt

xt

V

U

ht−1

ŷt−1

xt−1

V

U

ht+1

ŷt+1

xt+1

V

U

.W W W W

Input Sequence

Output Sequence

Hidden States

Figure 2.6: A ”Vanilla” Recurrent Neural Network.

simplified fashion, the update rule for the weights is given by equation 2.25.

W←W − η∇WL (2.25)

In equation 2.25, W denotes the model weights, η the learning rate (or step size) and ∇WL the gradient

of the loss function with respect to the model weights. The objective is to update the model weights W

along the opposite direction of the gradient, such that the loss is minimized.

The update of the weights is performed during a pre-defined number of updates or until the loss L
becomes lower than a threshold. Stochastic Gradient Descent might not find a global optimum, but if the

learning rate is reduced during training it will find a local optimum. Several variants of SGD algorithms

were proposed over time, such as AMS-Grad [Reddi et al., 2018], Adam [Kingma and Ba, 2014], RMS-

Prop [Tieleman and Hinton, 2012] and AdaGrad [Duchi et al., 2011].

2.2.3 Backpropagation Through Time

RNNs are trained with special backpropagation algorithm called Backpropagation Through Time

(BPTT). For computing the gradients and similarly to the backpropagation algorithm in feed-forward

neural networks, BPTT makes use of the chain rule for differentiation.

The computation of the gradient with respect to the parameters V of the output layer, ot, is given by:

∇VLt = (∇ŷtLt) (∇Vŷt) (2.26)

= (∇ŷtLt) (∇ot ŷt) (∇Vot) (2.27)

The computation of the gradient with respect to the weights W of the recurrent layer is more tricky:

15

∇WLt = (∇ŷtLt) (∇Wŷt) (2.28)

= (∇ŷtLt) (∇ot ŷt) (∇Wot) (2.29)

= (∇ŷtLt) (∇ot ŷt) (∇htot) (∇Wht) (2.30)

The problem is that the last term in equation 2.30, which is the gradient of the ht with respect to W

depends on ht−1 and so on. This recursion requires multiple applications of the chain rule in order to

compute the gradient.

Finally, in BPTT, the total gradient is obtained by summing the contribution of the gradients for all

timesteps t.

∇WL =

T∑

t=1

∇WLt (2.31)

By doing so, the gradient computation and the weight updates are performed based on the contributions

of individual timesteps. This procedure clarifies that a recurrent neural network unrolled is analogous to

a feed-forward neural network whose weights are shared over layers.

Furthermore, in practice, it is often used a variant of the BPTT algorithm called Truncated Backprop-

agation Through Time (TBPTT). TBPTT processes a given input sequence one timestep at a time, and

every k1 timesteps, it executes BPTT for k2 timesteps. By doing so, the update of a parameter can be

very efficient if k2 is small and the hidden states have been exposed to many timesteps and so may

contain useful information about the far past [Sutskever, 2013].

2.2.4 Why RNNs?

Recurrent Neural Networks have been applied to sequence modelling tasks and attained state of the

art performance in applications such as speech recognition [Graves et al., 2013]. However, the problem

of modelling sequences has been tackled for decades using other models, whose most prominent one

is the Hidden Markov Model (HMM). Therefore, a justification for using RNNs rather than other models

like HMMs is required.

Recurrent Neural Networks and Hidden Markov Models are both powerful sequence learners that share

some similarities in their architecture. For instance, either HMMs and RNNs have hidden states. How-

ever, in HMMs the state at a current timestep depends only on the previous state and, thus, they make a

Markovian assumption on the temporal structure of the data that constrains the model effectiveness. On

the other side, the hidden state of a RNN is shared (or distributed) over time and, therefore, it can capture

temporal dependencies from a larger history of previous states, making RNNs have significantly richer

memory and computational capacity. While it is possible to extend a HMM to consider a larger context

window this procedure would grow the state space exponentially with the size of the window, making the

model computationally inefficient for modelling long-range dependencies [Graves et al., 2014].

Finally, RNNs are also proven to be Turing complete [Siegelmann and Sontag, 1991], that is to say, in

general terms, any computation a computer can execute can be expressed by a RNN.

16

2.2.5 Long Short-Term Memory Networks

Despite the effectiveness of RNNs for modelling sequential data, they suffer from the vanishing gradi-

ent problem, that arises when the output at timestep t depends on inputs much earlier in time. Therefore,

Long Short-Term Memory networks (LSTMs) [Hochreiter and Schmidhuber, 1997; Graves, 2013] were

proposed to overcome this problem. They do so by means of a memory cell and three gates. The

memory cell stores information about the input sequence x across timesteps. The information flow from

and to the memory cell is controlled by gates. The gates are functions that control the proportion of the

current input to include in the memory cell (it), the proportion of the previous memory cell to forget (ft)

and the information to output from the current memory cell (ot). The memory updates, at each timestep

t, are computed as follows:

it = σ(Wiht−1 + Uixt + bi) (2.32)

ft = σ(Wfht−1 + Ufxt + bf) (2.33)

ot = σ(Woht−1 + Uoxt + bo) (2.34)

ct = ft � ct−1 + it � tanh(Wcht−1 + Ucxt + bc) (2.35)

ht = ot � tanh(ct) (2.36)

In the previous equations, it, ft, ot, ct and ht denote the input gate, the forget gate, the output gate, the

memory cell and the hidden state, respectively. σ is often a smooth function such as the sigmoid. The

other parameters are weight matrices to be learned. The initial hidden state and memory cell are also

parameters to be learned or, instead, to be initialized with zeros.

The aforementioned vanishing gradient problem is prevented by the gates, in particular, by the forget

gate. Figure 2.7 shows a schematic representation of a LSTM cell.

LSTMs can still not integrate information from future instants of time and, therefore, Bidirectional

Long Short-Term Memory networks (Bi-LSTM) [Graves et al., 2005] were proposed. Bi-LSTMs exploit

the input sequence x in both directions by means of two LSTMs: one executes a forward pass and the

other a backward pass. Hence, two hidden states (
−→
h t and

←−
h t) are produced at each timestep t, one in

each direction. These states act like a summary of the past and the future. The hidden states at similar

timesteps are often aggregated into a unique vector ht =
[−→

h t;
←−
h t

]
that represents the whole context

around timestep t, typically through concatenation.

17

+

�

tanh

�ot

Output Gate

++×
σ

ht

ht

Current
Hidden State

ct

Current
Memory Cell

�ft

Forget Gate

++×
σ

++× it

Input Gate

σ

×

Uo

Wo

×

Uf

Wf

×
Wi

Ui

+× +

×

Uc

Wc

bo

bf

bi

bc

tanh

ht−1

Previous
Hidden State

xtCurrent Input

ct−1

Previous
Memory Cell

Figure 2.7: Internal representation of a Long Short-Term Memory Network.

18

2.3 Sequence to Sequence Models

Recurrent Neural Networks, described in section 2.2, are able to map sequences into fixed-length

vectors. However, in many applications dealing with sequential data, such as machine translation,

speech recognition and time series forecasting, it is useful to convert sequences into sequences. The

sequence to sequence (Seq2Seq) learning framework is often linked with a class of encoder-decoder

models that was developed precisely for solving this problem of mapping variable-length sequences

into variable-length sequences using RNNs. Introduced for the first time by Cho et al. [2014] and

shortly after by Sutskever et al. [2014], in the context of machine translation, these architectures at-

tained state of the art performance in translation tasks and revolutionized the way machine translation is

performed. These models operate as follows. The encoder is a recurrent neural network (e.g., LSTM)

that reads a variable-length input sequence x = (x1,x2, ...,xTx) ∈ RTx×dx and converts it into a fixed-

length vector representation (or context vector), z ∈ Rdz , and the decoder is another recurrent neu-

ral network that takes this vector representation and converts it back into a variable-length sequence

y = (y1,y2, ...,yTy) ∈ RTy×dy . In the simplest encoder-decoder architecture, it is assumed that the

final encoder state has captured all the relevant information of the input sequence and, thus, acts like

a summary of it. The learned vector representation corresponds, in this scenario, to this final encoder

hidden state, i.e. z = he
T . Figure 2.8 shows a representation of a Seq2Seq model.

x1 x2 x3

. . .

xTx

y1 y2 y3

. . .

yTy

Input

Hidden Layer

Output

z

Learned Representation

Figure 2.8: Example of an encoder-decoder sequence to sequence model. The encoder reads an input
sequence, x, and converts it into a fixed-size vector representation, z, and the decoder takes this vector
representation and transforms it back into another sequence, y.

Seq2Seq models can operate under difference settings, depending on the problem being considered.

A particular instance of a Seq2Seq model is the Seq2Seq Autoencoder [Srivastava et al., 2015], in which

the input and output sequences are aligned in time (x = y) and, thus, have equal lengths (Tx = Ty). The

model learns to reconstruct the input sequence from an intermediate code (the vector representation

z) and, therefore, it resembles the conventional auto-encoding principle at the core of (feed-forward)

autoencoders, now extended to tackle sequential data and its temporal dependencies using recurrent

neural networks. At the same time, the Seq2Seq Autoencoder is a straightforward way of reducing

datasets of sequences, X = {x(n)}Nn=1, x(n) ∈ Rdx , into data points living in a latent space Z =

{z(n)}Nn=1, z(n) ∈ Rdz , often with a lower dimensionality (dz < dx).

19

2.4 Attention Mechanisms

The idea of integrating Attention in neural network models is partially inspired by the human attention

system that has the ability of selecting stimulus during the early stages of processing based on elemen-

tary stimulus features [Hübner et al., 2010]. An interesting example is the human visual system that

can selectively focus its attention on parts of the visual space in order to acquire information when and

where it is required and to build its own representation of the scene.

Sequence to Sequence models have their weakness in tackling long sequences (e.g., long time se-

ries), mainly because the intermediate fixed-length vector representation does not have enough capacity

to capture information from the entire input sequence, x. In other words, longer sequences need to be

encoded into the same fixed-length vector representation or context vector.

Rooted in the mechanism behind the human attention system, Attention Mechanisms (AM) were

proposed to overcome this limitation by allowing the decoder to selectively attend to relevant encoded

hidden states.

Several attention models were proposed in the past few years [Bahdanau et al., 2014; Luong et al.,

2015] and, in general, they operate as follows. At each timestep t, during decoding, the attention model

computes a context vector ct obtained by a weighted sum of the encoder hidden states. The weights

of the sum, aij , are computed by a score function that measures the similarity between the currently

decoded hidden state, hd
t , and the encoded hidden states he = (he

1,h
e
2, ...,h

e
T). Afterwards, these

scores are normalized using the softmax function, so that they sum to 1 along the second dimension.

The computation of the weights and context vectors can be described as follows:

ati =
exp (score(hd

t ,h
e
i))∑T

j=1 exp (score(hd
t ,h

e
j))

(2.37)

ct =

T∑

j=1

atjh
e
j (2.38)

The score can be computed using, for instance, the following similarity functions [Luong et al., 2015]:

score(hd
t ,h

e
i)=

(
hd
t

)>
he
i dot-product

(
hd
t

)>
Wah

e
i general

(2.39)

Figure 2.9 illustrates an attention mechanism.

Even though Attention was developed mainly in the framework of Natural Language Processing

(NLP) tasks involving text data, it can be applied to other problems dealing with other types of data

such as time series and videos. Attention mechanisms have shown an impressive success in a variety

of applications such as machine translation [Bahdanau et al., 2014], image classification [Wang et al.,

2017], speech recognition [Chorowski et al., 2015], pose estimation [Parisotto et al., 2018], sentence

summarization [Rush et al., 2015] and image captioning [Xu et al., 2015]. In fact, attention is a natural

extension of approaches based on Seq2Seq models for any kind of sequential data.

20

x1 x2 x3

. . .

xT

+

at1
at2 at3

atT

ct.

Figure 2.9: Example of an Attention Mechanism. The encoder processes an input sequence x. At each
decoding timestep t, the attention model computes a context vector, ct, as a weighted sum of all the
encoded hidden states.

2.5 Autoencoder-based Anomaly Detection

The application of autoencoders in anomaly detection tasks has increased significantly over the past

few years. Such interest has came together with the increasing trend of adopting unsupervised learning

approaches that are foreseen to play an important role in the future of machine learning [LeCun, Bengio,

and Hinton, 2015].

The main idea behind autoencoder-based anomaly detection is to focus on what is normal, rather

than modelling what is anomalous. The autoencoder is trained to reconstruct data with normal pattern

(e.g., normal time series) by minimizing a loss function that measures the quality of the reconstructions.

After training, the model is able to reconstruct well data with normal pattern, while it fails to reconstruct

anomalous data, since it never saw them during training. The detection is performed using the recon-

struction metrics as anomaly score (e.g., reconstruction error) or using the latent space representations,

by considering the low-dimensional manifold of normal data as a reference to evaluate unseen observa-

tions.

This approach has several advantages over other methodologies based on supervised learning mod-

els that try to classify an anomaly within a set of pre-identified ones. First, in several applications of inter-

est such as fault detection, fraud detection or cyber-security, new anomalies might appear (for instance,

new attacks or new types of fraud can emerge). By learning what is normal, the model is ready to even

detect data with (anomalous) patterns never seen during training.

21

2.5.1 Related Work

The related work on anomaly detection using five classes of approaches was previously described

in section 1.3. However, since the proposed approach will be based on an autoencoder architecture it is

important to describe in detail the relevant recent work on AD using this methodology.

The work on anomaly detection in time series data has increased significantly over the past few

years and has benefited from the progress made in Deep Learning. In particular, Seq2Seq and Autoen-

coder models have been more and more applied to anomaly detection tasks in sequential data, mainly

due to the lack of labelled datasets in the context of real applications. Using this framework, Malhotra

et al. [2015] proposed a prediction-based approach based on LSTMs and used the distribution of the

prediction errors for computing an anomaly score. However, this prediction-based approach is not able

to predict time series affected by external changes. Later on, reconstruction-based approaches were

proposed to overcome this limitation, such as Malhotra et al. [2017], that instead of predicting future

observations try to reconstruct the input sequence and, then, use the reconstruction errors as anomaly

scores.

After the introduction of the Variational Autoencoder by Kingma and Welling [2013], An and Cho [2015]

proposed an anomaly detection approach based on a (feed-forward) VAE and introduced a novel prob-

abilistic anomaly score that takes into account the variability of the data (the reconstruction probability).

Bayer and Osendorfer [2014] used variational inference and recurrent neural networks to model time

series data and introduced Stochastic Recurrent Networks (STORNs), that were subsequently applied

to anomaly detection in robot time series data [Sölch, 2015; Sölch et al., 2016]. Recently, Park et al.

[2017] applied a LSTM-based VAE for anomaly detection in robot assisted feeding data and introduced a

progress-based prior for the latent variables, z. Finally, Xu et al. [2018] applied a VAE to find anomalies

in seasonal Key Performance Indicators (KPIs) time series and provided a theoretical explanation for

VAE-based anomaly detection. These works summarize the recent approaches proposed for anomaly

detection in sequential data using autoencoders and sequence to sequence models.

22

Chapter 3

Proposed Approach

Our machines are dumb and we are just

trying to make them less dumb.

Yoshua Bengio

This chapter presents the proposed approach, which consists of two fundamental stages: representation

learning (section 3.1) and detection (section 3.2).

Given a dataset of N independent and identically distributed (i.i.d.) sequences X = {x(n)}Nn=1,

x(n) =
(
x
(n)
1 ,x

(n)
2 , ...,x

(n)
T

)
∈ RT×dx (e.g., a dataset of N dx-dimensional time series with T timesteps),

the representation learning task aims to learn a set of expressive vector representations Z = {z(n)}Nn=1,

while providing reconstructions of the input data obtained from z.

The second component is the detection task. Detection refers to the problem of finding whether a given

example x(n) is normal or anomalous. Since the representation learning model provides either rep-

resentations of data and the parameters of their reconstructions, detection can be executed over two

spaces: the z-space of latent representations and the input x-space.

It is important to stress, beforehand, that anomaly detection in time series data, without loss of generality

for other types of sequential data, can be executed at two different levels of detail: either by providing an

anomaly score for each observation x
(n)
t ∈ Rdx within a sequence x(n) or, at a higher level, by assigning

a single anomaly score to the whole sequence x(n). The main difference between both settings is that

the latter does not provide information regarding the temporal location of the anomaly in the sequence.

23

3.1 Representation Learning

3.1.1 Overview

At the heart of this Thesis lies a representation learning model. Learning good representations of

data allows to understand the data in meaningful ways and makes it possible to execute further tasks

using those representations. In this Thesis, the representations are learned for anomaly detection. First

of all, in such framework, it is important to define what is, indeed, a good representation of the data.

Good representations are those that capture posterior beliefs about explanatory causes of data, that

disentangle their underlying factors of variation [Bengio et al., 2012].

3.1.2 Model

The representation learning model in this Thesis is based on a Variational Recurrent Autoencoder

(VRAE): a variational autoencoder whose encoder and decoder are recurrent neural networks. All the

components/layers of the proposed model are described in detail in this part.

Input Layer

The model receives as input a sequence of observations x = (x1,x2, ...,xT). Then, it is applied a de-

noising autoencoding criterion, similarly to the idea of the denoising autoencoder (previously described

in subsection 2.1.1), but now extended to the variational auto-encoding framework [Bengio et al., 2015b].

This is performed through a corruption process, p(x̃|x), with additive Gaussian noise (zero-mean).

x̃ ∼ p(x̃|x), p(x̃|x) = Normal(x|0,σ2
nI) (3.1)

By doing so, the autoencoder is forced to learn how to reconstruct the clean version of the inputs, x,

from the corrupted one, x̃. Since it is a regularization technique, this phase is only active at training time.

Encoder

The encoder is parametrized using a Bidirectional Long-Short Term Memory network with tanh activation

that produces a sequence of hidden states in both directions, forward −→ and backward ←−. The final

encoder hidden states of both passes are concatenated with each other in order to produce a unique

vector he
T =

[−→
h e
T ;
←−
h e
T

]
.

Variational Layer

The prior distribution over the latent variables, pθ(z), is defined as an isotropic Normal distribution, i.e.

pθ(z) = Normal(0, I). The variational parameters of the approximate posterior q̃φ(z|x), the mean µz and

the standard deviation σz, are derived from the final encoder hidden state, he
T , using two fully connected

layers with Linear and SoftPlus activations, respectively. The SoftPlus function is adopted to ensure

that the standard deviation is parametrized as non-negative and using a smooth function. Since p(x̃|x)

(input corruption process) and qφ(z|x) both have Normal distributions, the approximate posterior given

24

a corruption distribution around x, denoted q̃φ(z|x), can be represented as a mixture of Gaussians as

noted by Bengio et al. [2015b]. However, for computational convenience and following the approach of

Park et al. [2017] a single Gaussian is employed, i.e. q̃φ(z|x) ≈ qφ(z|x̃). The latent variables are then

obtained by sampling from the approximate posterior, z ∼ Normal(µz,σ
2
zI), using the reparametrization

trick,

z = µz + σz � ε (3.2)

where ε ∼ Normal(0, I) is an auxiliary noise variable and � represents an element-wise product.

Attention

The model is integrated with a novel attention mechanism, specially designed in the context of this The-

sis, called Variational Self-Attention Mechanism (VSAM). The motivation behind such model is described

as follows. Previous attention models are able to deal with variable-length output sequences and com-

pute the context vectors ct dynamically, at each timestep, during the decoding process. VSAM makes

attention more suited and efficient for the particular kind of model employed in this work - a Variational

Seq2Seq Autoencoder - whose input and output sequences are similar and, in particular, have the same

length. The proposed mechanism combines two different ideas recently introduced: the variational ap-

proach to attention [Bahuleyan et al., 2017] and the self-attention (or intra-attention) model employed in

Transformer [Vaswani et al., 2017] (a very successful model developed for Natural Language Process-

ing (NLP) tasks based on self-attention). In general, a simple self-attention model receives as input a

sequence of vectors and outputs a sequence of context vectors ct with the same length (T), each one of

them computed as a weighted sum of all the input vectors. In detail, the proposed mechanism works as

follows. First, the relevance of every pair of encoded hidden states he
i and he

j is scored (3.3) using the

scaled dot-product similarity. The use of the dot-product as relevance measure makes the self-attention

model more efficient than previous attention mechanisms that need to learn a similarity matrix.

sij = score(he
i ,h

e
j) =

(he
i)
>

he
j√

dhe

(3.3)

In equation 3.3, dhe is the size of the encoder Bi-LSTM hidden state. Afterwards, the attention weights

aij are computed by normalizing the scores over the second dimension, as in equation 3.4, where

at = (at1, at2, ..., atT). This normalisation ensures that, for each timestep t,
∑T
j=1 atj = 1.

at = softmax(st) (3.4)

Finally, for deriving the new context-aware vector representations, ct, a variational approach is adopted.

This choice is motivated by the bypassing phenomenon pointed out by Bahuleyan et al. [2017]. In fact,

if the decoder has a direct and deterministic access to the encoder hidden states through attention, the

latent code z may not be forced to learn expressive representations, since the self-attention mechanism

could bypass most of the information to the decoder. This problem can be solved by applying to the

context vectors ct the same constraint applied to the latent variables of the VAE, that is to say, to model

ct, ∀t=(1,2,...,T), as random variables. To do so, firstly, deterministic context vectors are computed in

25

a similar fashion to a conventional self-attention model, cdett =
∑T
j=1 atjhj and, secondly, they are

transformed using another layer, similarly to Bahuleyan et al. [2017]. The prior distribution over the

context vectors is defined as a standard Normal, p(ct) = Normal(0, I), and the variational parameters

of the approximate posterior of the context vectors, q̃aφ(ct|x), mean µct and standard deviation σct ,

are derived in similar fashion to the latent variables z using two fully connected layers, including the

dimensionality (dct = dz). The final context vectors are sampled from the approximate posterior, ct ∼
Normal(µct ,σ

2
ctI). Figure 3.1 illustrates the proposed VSAM.

he
1

x1

he
2

x2

he
3

x3

. . . he
T

xT

cdet1 cdet2 cdet3
. . . cdetT

µc1 σc1 µc2 σc2 µc3 σc3 µcT σcT

c1 c2 c3 cT

Input

Hidden States

Prior:

p(ct) = Normal (0, I)

ct ∼ Normal
(
µct,σ

2
ct
I
)

cdett =
∑T

j=1 atjhj

Figure 3.1: Illustration of the proposed Variational Self-Attention Mechanism (VSAM).

Decoder

The decoder is also a Bi-LSTM with tanh activation that receives, at each timestep t, a latent repre-

sentation z, shared across timesteps, and a context vector ct. Unlike other works that use a Normal

distribution for pθ(xt|z), in this Thesis is used a Laplace distribution with parameters µxt and bxt . The

practical implication of this choice is that the training objective aims to minimize an `1 reconstruction

loss ∝ ‖xt − µxt‖1 rather than an `2 reconstruction loss ∝ ‖xt − µxt‖22. The minimization of `1-norm

promotes sparse reconstruction errors.

The outputs of the decoder are the parameters of the reconstructed distribution of the input sequence

of observations, mean µxt and diversity bxt . These parameters are derived from the decoder hidden

states using two fully connected layers with Linear and SoftPlus activations, respectively.

Activations

The activation functions employed in the proposed model are represented in Figure 3.2.

26

x

y

Linear

Sigmoid

Hyperbolic Tangent

SoftPlus

Figure 3.2: Activation Functions. Linear is used for deriving the expectation of the latent variables and
the outputs; Sigmoid is used internally in the LSTMs; Hyperbolic Tangent is applied to the encoder and
decoder Bi-LSTM layer; SoftPlus is used in the variance/diversity layers.

Loss Function

The loss for a particular sequence x(n) is given by:

L(θ, φ; x(n)) =−Ez∼q̃φ(z|x(n)), ct∼q̃aφ(ct|x(n))

[
log pθ

(
x(n)|z, c

)]
(3.5)

+ λKL

[
DKL

(
q̃φ(z|x(n))‖pθ(z)

)
+ η

T∑

t=1

DKL

(
q̃aφ(ct|x(n))‖pθ(ct)

)]

The expectation above can be approximated by Monte Carlo sampling by taking L samples from the

approximate posterior of the latent variables z and from the approximate posterior of the context vectors

c = (c1, c2, ..., cT). In equation 3.5, the parameter λKL weights the reconstruction and KL losses and

the parameter η balances the attention KL loss and the latent space KL loss.

Given a training dataset Xtrain = {x(n)}Nn=1 with N i.i.d. examples, the total loss is the sum of the losses

for all data points x(n).

L(θ, φ;Xtrain) =

N∑

n=1

L(θ, φ; x(n)) (3.6)

The log-likelihood of a sequence x(n) =
(
x
(n)
1 ,x

(n)
2 , ...,x

(n)
T

)
given a latent code z decomposes over

timesteps and can be written as in equation 3.7.

log p(x(n)|z) =

T∑

t=1

log p(x
(n)
t |z) (3.7)

Figure 3.3 illustrates the proposed model.

27

Encoder
Bi-LSTM

−→
h e

1

←−
h e

1

−→
h e

2

←−
h e

2

−→
h e

3

←−
h e

3

−→
h e

T

←−
h e

T

+n +n +n +n

x1 x2 x3 xTInput sequence

• • •

• • •

µz

σz

z

z ∼ Normal (µz,σ
2
zI)

−→
h d

1

←−
h d

1

−→
h d

2

←−
h d

2

−→
h d

3

←−
h d

3

−→
h d

T

←−
h d

T

• • •

• • •

µx1 bx1 µx2 bx2 µx3 bx3 µxT bxT

Decoder
Bi-LSTM

Variational Layer

Reconstruction xt ∼ Laplace(µxt
, bxt

)

cdet1 cdet2 cdet3 cdetT

a11 a12
a13
a1T

Linear

SoftPlus

µc1 σc1
µc2 σc2

µc3 σc3
µcT σcT

c1 c2 c3 cT

Variational
Self-Attention
Mechanism

ct ∼ Normal(µct,σ
2
ct
)

n ∼ Normal(0,σ2
n)

Corruption
x̃ = x + n

Figure 3.3: Proposed Variational Bi-LSTM Autoencoder with Variational Self-Attention Mechanism.

28

3.2 Anomaly Detection

The anomaly detection task refers to the problem of finding whether a given observed sequence x

is normal or anomalous. The proposed model makes it possible to perform detection in two different

spaces or domains: in the space of the input variable x, using the reconstruction parameters, and in

the latent variables z-space, using the representations. In this section both detection methodologies are

described in detail.

3.2.1 Reconstruction-based Detection

The reconstruction-based detection strategy is based on the following principle. The Variational Bi-

LSTM Autoencoder with Attention is trained on normal data sequences, so that it learns the normal

pattern of data. At test time, normal sequences are expected to be well reconstructed whereas anoma-

lous ones are not, since the model has not seen anomalous data during training.

Unlike deterministic autoencoders, the proposed model based on VAE reconstructs the distribution

parameters (mean µx and diversity bx, in the case of a Laplace distribution) of the input variable rather

than the input variable itself. Therefore, it is possible to use probability measures as anomaly scores.

One approach is to compute the reconstruction probability, introduced by An and Cho [2015]. The

reconstruction probability is an estimation of the reconstruction term of the VAE loss function by Monte

Carlo integration.

Ezl∼qφ(z|x)
[

log pθ(x|z)
]
≈ 1

L

L∑

l=1

log pθ(x|zl)

The process can be described as follows. First, an input test sequence x is propagated through the

encoder and the posterior parameters µz and σz are obtained in a fully deterministic fashion. Then, L

samples are drawn from an isotropic Gaussian distribution with these parameters. Each sample zl is

propagated through the decoder network that outputs the distribution parameters of the reconstruction.

Afterwards, it is computed the log-likelihood of the input sample x, given a latent code zl drawn from the

approximate posterior distribution. Finally, the reconstruction probability is averaged over all samples

drawn. The process is summarized in Algorithm 2.

Algorithm 2 Reconstruction Probability Score
Input: x ∈ RT×dx
Output: ReconstructionProbability ∈ RT
(µz,σz)← Encoder(x)
for l = 1 to L do

zl ∼ Normal(µz,σz)
(µlx,b

l
x)← Decoder(zl)

scorel ← log p(x|µlx,blx)
end for
ReconstructionProbability ← 1

L

∑L
l=1 scorel

return ReconstructionProbability

The anomaly score itself corresponds to the negative reconstruction probability, so that the lower the

reconstruction probability, the higher the anomaly score.

29

There are several advantages in using the reconstruction probability instead of a deterministic recon-

struction error, which is commonly used in autoencoder-based anomaly detection approaches. The first

one is related with the detection threshold. The reconstruction probability does not requires data-specific

thresholds for detecting anomalies, since it is a probabilistic measure. Using such a metric provides a

more intuitive and objective way of analysing the results. The second one is that the reconstruction

probability takes into account the variability of the data. Intuitively, anomalous data has higher variance

than normal data and, hence, the reconstruction probability is likely to be lower for anomalous examples.

The integration of the variability of data concept in anomaly detection enriches the expressive power of

the proposed model relatively to conventional autoencoders. Even though the representations of normal

and anomalous data in the latent space might share the same expectation, µz, the variability of anoma-

lous samples relatively to normal ones is likely to be higher, as pointed out by An and Cho [2015] and,

thus, provide an extra tool to distinguish anomalous examples from the normal ones.

Is is also interesting to compute a (stochastic) reconstruction error (RE) by Monte Carlo sampling

(equation 3.8), which can be used as an alternative anomaly metric.

REz∼qφ(z|x)(x) =
1

L

L∑

l=1

∥∥∥x− E
[
pθ (xl|zl)

]
︸ ︷︷ ︸

µxl

∥∥∥
1

(3.8)

3.2.2 Latent Space-based Detection

The representation learning model learns to map input data sequences x with different patterns into

different regions of the space and, therefore, it is straightforward to use those representations to distin-

guish between normal and anomalous samples. Hence, this detection strategy operates in the space of

representations, rather than in the space of the input data as the reconstruction-based detection does.

Given a set of latent representations, the goal of anomaly detection is to find out whether a given

representation is normal or anomalous. For this purpose, different methodologies can be employed

and they can be either supervised or unsupervised. Since this Thesis aims to develop an unsupervised

framework for anomaly detection the focus is on unsupervised detection methods. However, when

considering latent space-based detection, a supervised model will also be tested, so that it can be used

as a reference for evaluating both frameworks, supervised and unsupervised.

The first latent-space detection method consist on applying unsupervised clustering in the µz space
(
µz = E

[
qφ(z|x)

])
, using hierarchical (agglomerative) clustering, spectral clustering and k -means++.

The second latent-space detection approach takes into account the variability of the latent represen-

tations, rather than just their expectation. For obtaining an anomaly score, it is computed the median

Wasserstein distance [Villani, 2009] between a test sample ztest and NW other samples within the test

set of latent representations, so that the similarity between the posterior distribution of a given sample

and a subset of other samples is used as anomaly score. This methodology works under the assumption

often made in anomaly detection problems that most data are normal. The computations are described

30

by equations 3.9 and 3.10.

W (ztest, zi)2 = ‖µztest − µzi‖22 + ‖Σ1/2
ztest −Σ

1/2
zi ‖2F (3.9)

score(ztest) = median{W (ztest, zi)2}NWi=1 (3.10)

In equations 3.9 and 3.10, W denotes the Wasserstein distance and the subscript 2 and F denote the

`2-norm and the Frobenius norm, respectively.

3.2.3 Dimensionality of the Latent Space

The dimensionality of the latent space z, dz, has a major impact on the learning process. Therefore,

it is important to discuss the effect of this hyper-parameter from an anomaly detection point of view.

On one hand, choosing a very small dz would lead to under-fitting to training data and, in that case,

the model might not be able to reconstruct well enough the normal pattern of the sequences. On

the other hand, choosing a too large dz could cause over-fitting to the training data and lead to poor

generalisation. Moreover, with a code of larger size, the model could start learning to reconstruct even

anomalous sequences and, thus, the performance of anomaly detection would be reduced, specially in

terms of false negative examples that would not be detected in this scenario.

Therefore, the choice of the dimensionality of the latent space, dz, is just another instance of the

bias-variance trade-off. In a fully unsupervised scenario, it is difficult to choose this parameter. Very

often in the literature this choice is performed empirically.

31

32

Chapter 4

Experiments & Results

To deal with a 14-dimensional space,

visualize a 3D space and say ”fourteen” to

yourself very loudly. Everyone does it.

Geoffrey Hinton

This Thesis was motivated by a particular application of anomaly detection that aims to find anoma-

lous behaviour in solar energy generation time series data. Nevertheless, one of the goals of this Thesis

was to develop a generic framework for anomaly detection, that is to say, one methodology that could

work for energy data but, at the same time, that could be applied to other time series (univariate or

multivariate) or, in a broader sense, to other kinds of sequential data, such as text and videos. In this

context, to test the effectiveness of the model in data from other fields, another dataset is considered.

It comes from an important application domain of anomaly detection - healthcare - and it consists of

electrocardiogram (ECG) time series, that are a yet challenging problem for machine learning based

anomaly detection approaches, specially in the absence of anomaly labels.

This chapter is organized as follows. In section 4.1, are described the training and detection settings.

Afterwards, in sections 4.2 and 4.3, are explained the results. In particular, it is presented a description

of the dataset, the optimization and regularization settings including the hyper-parameters used in the

experiments, the anomaly detection results and an analysis of the representations learned by the model.

4.1 Training and Detection Modes

The proposed model can operate under two modes: off-line and on-line.

The off-line mode is mostly employed for finding whether an entire sequence is normal or anoma-

lous. Although this framework is mainly applied to sequence classification problems, in which a single

anomaly score or label is produced for an entire sequence, the proposed model outputs reconstructions

parameters and anomaly scores for observations at every timestep t, meaning that it is possible to lo-

calize the anomaly within a given input sequence x. However, in this mode, the scores at particular

timesteps t can depend on future observations within the same window and this is the reason why this

33

framework corresponds to an off-line setup. Training is performed with non-overlapping sequences of

length T and the observations within a sequence share a unique representation in the latent space z.

In some applications it might be important to minimize the detection delay and perform anomaly

detection in real-time. This framework requires an on-line strategy. In such scenarios, no information

about future observations can be considered. In the on-line mode, training is executed using overlapping

sequences obtained with a sliding window with a width T < L and a step size of 1. At test time, the

detection is performed without considering observations of future time instants, by feeding up the model

with a window of observations in which the last point corresponds to the current timestep t. Hence, the

anomaly score at time instant t corresponds to the score of the last observation within the sequence

whose last timestep is t. In this mode, for a long sequence with length L, are generated L − T + 1

windows of length T and each one of them has its own representation in the latent space. Since these

windows overlap and, thus, share observations over time, the latent space will exhibit trajectories over

time.

34

4.2 Solar Energy Generation Dataset: Results & Analysis

The solar energy generation dataset was provided by C-Side1, a Portuguese company that develops

intelligent solutions in areas such as energy, automation, surveillance and security systems.

The dataset (X) is composed of univariate time series (dx = 1) of solar photovoltaic (PV) energy genera-

tion coming from about 6000 residential installations distributed across Portugal. The measurements are

acquired by a smart plug installed near the PV panel with a sampling period of 15 min, communicated to a

gateway and stored in [kWh] units. Each installation is expected to produce 96 observations per day. The

dataset includes a total of ≈ 100 million entries, corresponding to roughly 1 million PV production curves.

Solar photovoltaic generation time series are characterised by a strong seasonality, with predominant

seasonal period of a day (24h, 96 samples). An example of a daily production curve in a day without

clouds is shown in Figure 4.1.

t

E

Figure 4.1: Representation of a daily production curve (24h).

The dataset is fully unlabelled, meaning that no information regarding anomalies is available.

The training data was obtained by selecting a subset X normal ⊂ X of 1430 daily sequences with normal

pattern (days without clouds and any kind of anomaly, where the energy generated is as expected).

The dataset of normal sequences was divided into two subsets - a training set X normal
train and a validation

set X normal
val - with a splitting ratio of 80/20, respectively. The data was also normalised to the installed

capacity, so that the range of observed values lies in the interval [0, 1].

4.2.1 Optimization and Regularization

Optimization was executed using AMS-Grad [Reddi et al., 2018] optimizer, a variant of Adam [Kingma

and Ba, 2014], in mini-batches of size 200 (off-line mode) and 10000 (on-line mode), during 1500 epochs.

The learning rate was 0.001 and the network weights were initialized using Xavier initialization [Glorot

and Bengio, 2010]. The full model has 274.958 parameters to optimize. The latent space dimensionality

and the context vectors dimensionality was set to 3. The encoder and decoder Bi-LSTM both have 256

units, 128 in each direction. The noise added to the inputs for the denoising autoencoding criterion has

variance σ2
n = 0.1σ2

x. The gradients were clipped by value with a clip value of 1.0. It was also applied

a KL-annealing scheme [Bowman et al., 2015] that consists on varying the weight λKL during training.

By doing so, λKL is initially close to zero in order to allow accurate reconstructions in the early stages

of training and is gradually increased to promote smooth encodings and diversity. The parameter η that
1Website: www.cside.pt

35

www.cside.pt

balances the two KL-divergence terms - latent space and attention - was 0.01. A sparsity regularizer

was also applied to the activations of the encoder Bi-LSTM [Arpit et al., 2016] that penalizes the `1-norm

of the activations with a weight of 10−8.

4.2.2 Anomaly Detection Results

To illustrate the effectiveness of the proposed approach, some examples of solar energy generation

curves representative of different patterns and behaviours were annotated (Xtest), such as a sequence

with normal pattern used as ground truth, a brief shading, a fault, a spike anomaly, an example of a

daily curve where snow covered the surface of the PV panel and a sequence corresponding to a day

with clouds. Figure 4.2 shows the annotated examples of solar PV generation daily curves and the

corresponding anomaly scores: the reconstruction probability (top bar) and the reconstruction error

(bottom bar), both obtained using L = 512 Monte Carlo samples.

0.0

0.5

1.0

E
n

er
gy

Ground Truth Brief Shading

0

1

E
n

er
gy

Inverter Fault Spike

0.0

0.5

1.0

E
n

er
gy

Snow Cloudy Day

Figure 4.2: Anomaly scores for some representative sequences: reconstruction probability (top bar) and
reconstruction error (bottom bar). (off-line mode, non-overlapping sequences with T = 96 timesteps).

The training and validation losses are shown in Table 4.1.

Set Training (X normal
train) Validation (X normal

val)

Loss −3.1457 −3.1169

Table 4.1: Training and validation losses.

The training and validation losses are similar, meaning that the model is not over-fitting to training data

and is able to generalize to unseen (normal) sequences, reconstructing them well.

36

The proposed model provides the parameters of the output distribution (mean µx and diversity bx).

As previously mentioned in section 3.2.1, the diversity of the output distribution can improve the anomaly

detection task, since anomalous data has, in principle, higher variability. Figure 4.3 shows an example

of a time series of a particular installation and the corresponding output parameters of the model.

1950 2000 2050 2100 2150 2200 2250 2300

Time

0.0

0.2

0.4

0.6

0.8

E
n

er
g
y

x
µx

±bx

Figure 4.3: Visualization of a 4-day sequence with 2 days of anomalous energy generation and the
corresponding parameters of the output distribution, mean µx and diversity bx.

Figure 4.3 shows that, for the last two days (with a lower energy production), the model reconstructs

badly the sequence, while the diversity is higher when compared with the first two days, with normal pro-

duction. This result validates the importance of taking into account the variability of the reconstruction,

rather than just its expectation.

4.2.3 Latent Space Analysis

At the heart of an autoencoder lies its latent space: a low-dimensional representation of the data that

encodes its underlying factors of variation. Therefore, it is interesting to visualize these representations.

For visualization purposes, the dimensionality of the latent space was reduced from 3D (dz = 3) to 2D

using Principal Component Analysis (PCA) and t-Distributed Stochastic Neighbour Embedding (t-SNE)

[van der Maaten and Hinton, 2008].

Figure 4.4: Latent Space visualization of X normal
train (with only normal samples) in 2D via t-SNE (left) and

PCA (right). The label corresponds to the time instant of the last observation within each sequence.
(Setup: dz = 3, on-line mode, training executed using overlapping sequences with T = 12 timesteps).

37

The visualization of the latent space shows evidence that the model is mapping sequences aligned

in time onto the same region of the z-space and, more interestingly, it reveals a cyclic trajectory whose

period matches exactly the seasonal period of the solar PV curves: one day. In other words, the model

has learned the seasonal property of the data without being told of it. It is important to recall that no prior

information regarding the seasonality property is provided, all the windows were shuffled during training

and in this experiment each window of observations has 12 timesteps, which is less than the seasonal

period of the data (96). Previous works have shown latent spaces with similar behaviour, even though

without analysing and interpreting it, until the recent work of Xu et al. [2018] that provided for the first

time an explanation for this effect that they called Time Gradient.

In the context of time series anomaly detection, it is interesting to exploit how the representations

of anomalous data compare with the representations of normal examples. Figure 4.5 shows the latent

representations for the sequences that were annotated and validated by the company that provided the

dataset. Since the variational latent space is obtained by sampling from the posterior distribution, in

this plot is represented the mean µz = E
[
qφ(z|x)

]
space, which is deterministically obtained from the

encoder Bi-LSTM output.

Cloudy Day

Snow

Spike

Inverter Fault

Brief Shading

Normal

Figure 4.5: Visualization of the latent space in 2D via PCA for the test set (Xtest) containing some
annotated sequences (on-line mode, T = 12 timesteps).

Figure 4.5 shows trajectories over the latent space that were generated by the sliding window ap-

proach employed in the on-line anomaly detection mode. The normal samples (green) and the anoma-

lous ones are represented differently in the space and there is a clear deviation of the anomalous exam-

ples from the normal trajectory. This conclusion supports the fact that the model has, indeed, learned a

manifold of normal data and its now projecting sequences with different behaviour onto different regions

of the space. Moreover, the normal data exhibits slightly different trajectories in the space mainly be-

cause even though the daily curves have the same qualitative (normal) pattern, they are shifted in time

38

due to different locations of the installations, where the sun starts shining on the PV panel at different

moments and also due to different inclinations of the panel.

The latent variables components can also be visualized in time, i.e. each dimension over a sequence

of consecutive overlapping windows. Figure 4.6 shows, on the left side, the mean µzi of each component

i over 400 consecutive training windows. On the right side, the autocorrelation function is represented

for each component of the latent variables. This experiment was performed using a 3-dimensional latent

space (dz = 3).

0 100 200 300 400
Training Window

−1

0

1

L
at

en
t

V
ar

ia
b

le
s

M
ea

n

0 100 200 300 400
Lags

−0.5

0.0

0.5

1.0

A
u

to
co

rr
el

at
io

n

z1

z2

z3

Figure 4.6: Representation of the latent variables and the corresponding autocorrelation over consecu-
tive training windows (on-line mode, T = 12 timesteps, dz = 3).

Figure 4.6 clearly shows that the latent variables have a seasonal behaviour. More interestingly, they

have a predominant seasonal period equal to 96, which corresponds to one day and matches exactly

the seasonal period of the data. This behaviour explains the previously analysed latent space. It seems

that the model has learned the seasonal pattern of the solar energy time series and is encoding this

property in the latent variables. Such an evidence supports the ability of the proposed model to deal

with seasonal data, which is very often a concern in applications dealing with time series data.

4.2.4 Attention Visualization

The Variational Self-Attention Mechanism aids the decoding process by allowing the model to pay

more attention to particular hidden states and it does so by computing a set of attention weights

{aij}Ti,j=1. Therefore, the attention model produces a 2D attention map for each sequence that shows

where the network is focusing its attention. Figure 4.7 shows the attention maps for different test se-

quences with and without anomalies. The attention weights are represented in a logarithmic scale.

The attention maps show evidence that the self-attention model is producing context-aware represen-

tations, which can be seen by the distribution of the attention weights in a small window around the

first diagonal of the maps. This result supports the intuition that most of the temporal context of an

observation in a time series lies in a narrow window around it. Furthermore, for different anomalies,

the maps show different distributions of the attention weights. In some cases, the self-attention model

is capturing dependencies between hidden states far in time. This conclusion validates the proposed

reconstruction-based anomaly detection approach, since it tells that the network struggles to reconstruct

well anomalous sequences and tries to capture long-term context in those.

39

0 4 8 12 16 20 24

Input Timestep [h]

0

4

8

12

16

20

24

O
u

tp
u

t
T

im
es

te
p

[h
]

0 4 8 12 16 20 24

Time [h]

0.0

0.2

0.4

0.6

0.8

E
n

er
gy

0 4 8 12 16 20 24

Input Timestep [h]

0

4

8

12

16

20

24

O
u

tp
u

t
T

im
es

te
p

[h
]

0 4 8 12 16 20 24

Time [h]

0.0

0.2

0.4

0.6

0.8

E
n

er
gy

0 4 8 12 16 20 24

Input Timestep [h]

0

4

8

12

16

20

24

O
u

tp
u

t
T

im
es

te
p

[h
]

0 4 8 12 16 20 24

Time [h]

0.0

0.2

0.4

0.6

0.8

E
n

er
gy

0 4 8 12 16 20 24

Input Timestep [h]

0

4

8

12

16

20

24

O
u

tp
u

t
T

im
es

te
p

[h
]

0 4 8 12 16 20 24

Time [h]

0.0

0.2

0.4

0.6

0.8

E
n

er
g
y

0 4 8 12 16 20 24

Input Timestep [h]

0

4

8

12

16

20

24

O
u

tp
u

t
T

im
es

te
p

[h
]

0 4 8 12 16 20 24

Time [h]

0.0

0.2

0.4

0.6

0.8
E

n
er

g
y

0 4 8 12 16 20 24

Input Timestep [h]

0

4

8

12

16

20

24

O
u

tp
u

t
T

im
es

te
p

[h
]

10−3 10−2 10−1 100

Attention Weights

0 4 8 12 16 20 24

Time [h]

0.0

0.2

0.4

0.6

0.8

E
n

er
g
y

Figure 4.7: Visualization of the attention maps for the annotated set (Xtest).

It is also possible to visualize the context vectors, ct, in the mean space (µct). The visualization,

shown in Figure 4.8, was performed by reducing the dimensionality of µct to 2D using PCA. The labels

represent the corresponding time instant t. Each context vector is computed as a weighted sum of all

the encoded hidden states, so each one of them combines information from different time instants.

Figure 4.8: Visualization of the context vectors, ct, of the validation set X normal
val .

40

4.3 Electrocardiogram Dataset: Results & Analysis

The electrocardiogram (ECG) dataset is the ECG5000, which was donated by Eamonn Keogh and

Yanping Chen and is publicly available in the UCR Time Series Classification archive [Chen et al., 2015].

This dataset is composed of 5000 univariate time series (dx = 1) with 140 observations (T = 140). Each

sequence corresponds to one heartbeat. Five classes are annotated, corresponding to the following

labels: Normal (N), R-on-T Premature Ventricular Contraction (R-on-T PVC), Premature Ventricular

Contraction (PVC), Supra-ventricular Premature or Ectopic Beat (SP or EB) and Unclassified Beat (UB).

In the original data source, the dataset is provided with a splitting into two subsets: a training set with

500 sequences and a test set with 4500 sequences. Both the training and the test set contain all classes,

meaning that the training set contain both normal and anomalous data. Moreover, the classes are highly

imbalanced, the normal class is the predominant one followed by the class with label R-on-T PVC. For

validation, the original training set was divided into two subsets - one for training the model (Xtrain) and

one for validation (Xval) - with a splitting ratio of 80/20, respectively. No further pre-processing was

executed. Figure 4.9 shows the density of each class per set.

Figure 4.9: Class densities per set.

The ECG5000 dataset is labelled and, therefore, it is possible to evaluate the performance of the unsu-

pervised anomaly detection methods using conventional classification scores. Every sequence has a

single label, meaning that no information regarding the location of the anomalous region of the ECG

is provided. Hence, the detection strategy will be based on the representations space (previously de-

scribed in section 3.2.2). Given a set of representations of heartbeats in the latent space, the objective

is to find which sequences are normal and anomalous. Rather than computing an anomaly score for

every observation within a sequence, the objective is to conclude about the whole sequence. Since the

detection is based on the latent representations, the attention model, which aids the decoding phase, is

not considered in this framework.

4.3.1 Optimization and Regularisation

Training was performed using AMS-Grad [Reddi et al., 2018] optimizer, a variant of Adam [Kingma

and Ba, 2014], with a learning rate of 0.001. Gradient computation and weight updates are performed in

41

mini-batches of size 500, during 1500 epochs. The latent space space dimensionality, dz, was set to 5,

corresponding to an encoding compression ratio of 28. The encoder and decoder Bi-LSTM both have

256 units in total, 128 in each direction. The noise added at the input level has a standard deviation

σn = 0.8σx. The number of Monte Carlo samples, L, is set to 1 during training, following the work

of Kingma and Welling [2013]. To compute the anomaly scores based on the Wasserstein distance,

NW = 4000 examples are used. To promote stability during training, the gradients were clipped by value

with a limit on their magnitude of 5.0. To prevent the KL-divergence term vanishing problem [Bowman

et al., 2015], a KL-annealing strategy is applied in order to vary the weight λKL of the KL-divergence

term in the loss function. By doing so, the weight λKL is initially close to zero - to promote accurate

reconstructions of x in the early stages of training - and gradually increased to encourage smooth en-

codings and diversity. Furthermore, a sparse regularization criterion is employed to promote sparsity in

the hidden layer of the encoder Bi-LSTM [Arpit et al., 2016], by adding a penalty on the `1-norm of the

activations with a weight parameter of 10−7. The total number of parameters to optimize is 273.420.

4.3.2 Anomaly Detection Results

The anomaly detection results are evaluated using Area Under the Curve (AUC), Accuracy, Precision,

Recall and F1-score. These scores are weighted per-class. Since the output of a clustering algorithm

might provide permuted labels, i.e. the cluster assignments may be permuted between the normal and

anomalous classes, a search is performed over all possible matches between cluster assignments and

ground-truth labels and the combination corresponding to the best scores is chosen, similarly to Farhadi

et al. [2015]. Table 4.2 presents the detection results computed on the test set, Xtest, using different

clustering algorithms and a linear SVM. All results reported were averaged over 10 runs of both the

representation learning and detection models.

Metric Hierarchical Spectral k-Means Wasserstein SVM

AUC 0.9569 0.9591 0.9591 0.9819 0.9836
Accuracy 0.9554 0.9581 0.9596 0.9510 0.9843
Precision 0.9585 0.9470 0.9544 0.9469 0.9847

Recall 0.9463 0.9516 0.9538 0.9465 0.9843
F1-score 0.9465 0.9474 0.9522 0.9461 0.9844

Table 4.2: Anomaly detection scores for the electrocardiogram ECG5000 dataset. The best unsupervised
anomaly detection scores are emphasized in bold.

Figure 4.10 shows the Receiver Operating Characteristic curve for the Wasserstein distance metric, that

yields the best unsupervised anomaly detection AUC score.

The results obtained for the three clustering algorithms are roughly identical. This fact supports the

idea that the key challenge in unsupervised anomaly detection is to learn good (expressive) represen-

tations of the data. This is the reason why this Thesis is strongly focused on representation learning.

Furthermore, the Wasserstein distance-based score outperforms clustering-based detection in terms

42

0.0 0.2 0.4 0.6 0.8 1.0

False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

T
ru

e
P

o
si

ti
ve

R
a
te

ROC Curve
(AUC=0.9819)

Figure 4.10: Receiver operating characteristic curve for the Wasserstein distance-based detection.

of AUC and is similar in terms of the other metrics. This result is expected since this score is taking

into account the variability of the representations in the latent space, rather than just their mean. The

supervised Support Vector Machine performs very well, while the unsupervised detection methods stay

roughly competitive. Anyway, all detection strategies attained relatively high detection scores.

Other works have used the same dataset mainly in a supervised multi-class classification frame-

work, instead of anomaly detection that is a two-class problem. Even though both schemes can not be

compared in general, since the dataset is highly imbalanced, with a large predominance of the normal

and one of the anomalous classes (Figure 4.9), the multi-class classification problem is almost degen-

erated in a two-class one. Therefore, it is interesting to compare the results obtained with the proposed

approach with the results reported in other works that considered different techniques. Table 4.3 sum-

marizes the best scores obtained using both supervised and unsupervised learning models in several

recent works and the best results for each metric are emphasized in bold.

Source S/Ua Model AUC Acc F1

Proposed
S VRAE+SVM 0.9836 0.9843 0.9844
U VRAE+Clust/W 0.9819 0.9596 0.9522

Lei et al. [2017] S SPIRAL-XGB 0.9100 - -

Karim et al. [2017] S F-t ALSTM-FCN - 0.9496 -

Malhotra et al. [2016] S SAE-C - 0.9340 -

Liu et al. [2018] U oFCMdd - - 0.8084

aSupervised/Unsupervised

Table 4.3: Comparison of the results with other works using the ECG5000 dataset.

Under the two-class approximation made above, the proposed unsupervised approach outperforms pre-

vious supervised and unsupervised learning models in every score reported.

43

4.3.3 Latent Space Analysis

Figure 4.11 shows the latent space of the entire test set Xtest with 4500 sequences. Each datapoint is

labelled with one of the five possible classes annotated. For visualization purposes, the dimensionality of

the latent space is reduced from 5 to 2 dimensions using Principal Component Analysis and t-Distributed

Stochastic Neighbour Embedding. For the t-SNE embedding, the perplexity parameter was set to 50.0,

while the number of iterations was 2000.

PCA

t-SNE

Normal
R-on-T
PVC

PVC SP or EB UB

Class Labels

Figure 4.11: Latent Space Visualization of Xtest in 2D via PCA (top) and t-SNE (bottom).

Figure 4.11 reveals a structured and expressive latent space. The sequences (heartbeats) of the

normal class, represented in green, lie in a region of the latent space different from the anomalous

ones, while similar heartbeats are mapped onto the same region of the space. Moreover, it is also clear

that different anomalies are represented in distinct regions of the space. The anomalous heartbeats in

blue and orange, which refer to premature ventricular contractions, are represented close to each other.

Interestingly, the anomaly with label ”R-on-T PVC”, represented in orange, has a smaller cluster apart

from the larger one (top of the figure). This might be an interesting result to be analysed by experts.

44

4.4 Implementation, Hardware & Computational Efficiency

All the models were implemented using the Keras deep learning library for Python [Chollet, 2015],

with TensorFlow backend [Abadi et al., 2015]. Training was performed using a single NVIDIA GTX 1080

TI graphics processing unit with 11GB of memory, in a machine with an 8th generation i7 processor and

16GB of DDR4 RAM.

One important aspect of anomaly detection is efficiency. In many applications involving real world

data, it is important to ensure that the anomaly scores are computed in a short amount of time and with

a minimum delay.

Dataset # parameters # timesteps # sequences
Training

Time
[ms/seq]

Inference
Time

[ms/seq]

Anomaly
Scores
[ms/seq]

Energy 274.958 32 109728 0.09970 0.02244 21.15

ECG 273.420 140 400 2.002 2.4214 31.34

Table 4.4: Computational efficiency of training, inference and anomaly scores computation. The anomaly
scores are the reconstruction probability and the reconstruction error (for the solar energy dataset),
computed using L = 512 Monte Carlo samples, and the Wasserstein score based on NW = 4000
representations (for the ECG dataset).

The model can infer and produce an anomaly score within a few dozens of milliseconds, which is a

very short period of time. In some real-world applications the decisions can be usually made in dozens

of milliseconds and, thus, the proposed model would be suitable for those. In the energy application,

the detection period is not very important, since the objective is to find if the system is behaving well, for

instance in a daily or weekly basis. However, when dealing with electrocardiogram data, the detection

delay is much more relevant, since an early alert of anomaly may allow someone to react soon and to

take the necessary measures.

4.5 Discussion

Clearly, the metrics and scores based on the latent space representations show the ability of the

method to perform anomaly detection, as well as the reconstruction-based metrics. Such results validate

the choice of a representation learning based model for this Thesis, which allows different detection

strategies. More importantly, as desired since the beginning, both the Variational Bi-LSTM Autoencoder

and the detection models are unsupervised and have proven to outperform previous supervised and

unsupervised approaches. From the point of view of the author, the unsupervised nature of the approach

is one of the key achievements of this Thesis.

In reconstruction-based detection, the reconstruction probability reveals an improved capacity of

detecting anomalous patterns relatively to the reconstruction error, specially in the case where the pro-

duction curves show a reduced energy production (e.g., snow anomaly) and the predicted mean is close

45

to the original value.

In what concerns latent-space based detection, the different clustering algorithms tested revealed sim-

ilar scores, while the proposed Wasserstein distance score yields a better result in terms of AUC. Both

detection strategies were, thus, validated experimentally.

The latent space for both datasets is structured and expressive. For the solar energy generation, the

latent space is cyclic, which is an interesting effect considering the seasonality property of these time

series. Moreover, the representations of the ECG sequences are also very interesting, since different

anomalies are represented in different regions of the space and this was obtained without any kind of

supervision. This result makes the quest for a possible line of future work (section 5.3) that can tackle

the problem of distinguishing between different anomalies.

46

Chapter 5

Conclusions

People worry that computers will get too

smart and take over the world, but the real

problem is that they are too stupid and they

have already taken over the world.

Pedro Domingos

5.1 Lessons Learned & Final Remarks

One of the major challenges of this work was the full absence of labels for the energy dataset, which

made the quest for this Thesis. Actually, this a common scenario in the context of real-world applications

in areas such as energy that makes anomaly detection, indeed, a great challenge. Such a scenario mo-

tivated the proposed unsupervised framework for anomaly detection. The main advantage of following

such an approach is that it can be applied to a large amount of time series data of very different na-

tures. On the other hand, the main difficulty found due to the lack of labels was evaluation, since it is not

possible to compute conventional classification metrics under this scenario. In fact, evaluation metrics

and criteria for unsupervised anomaly detection algorithms, in the absence of labels and ground truth,

remains a challenging practical problem where the literature is still scarce, even though some recent

work has been done on the subject [Goix, 2016].

Furthermore, in unsupervised anomaly detection, the concept of normality, often very intuitive for

experts, turns out to be hard to define in formal terms. Nevertheless, from an anomaly detection per-

spective, defining what is normal seems to be more reasonable than defining what is anomalous, outlier

or novel. In some real applications the adoption of supervised learning approaches narrows the effec-

tiveness of anomaly detection and delays the detection. For instance, in fraud detection, when a new

fraud happens, supervised models are not trained for detecting that new type of fraud, and the system

needs to be retrained to detect it. Instead, by modelling what is normal, abnormal behaviour may be

detected in advance and new frauds can be detected still in real-time. In applications like network in-

trusion detection and cyber-fraud, where the attacks profile is always changing, this may also play an

important role. Moreover, when dealing with time series, it is hard to stablish the boundaries of what an

anomaly is. In large-scale applications of AD, the definition of what is anomalous is often conditioned

47

by the response capacity of the company to those anomalies. Under such constraints, the goal of an

AD algorithm is to identify the most anomalous observations that can be checked and confirmed by the

company or service provider.

5.2 Summary of Contributions

This Thesis presents a generic, unsupervised and scalable framework for anomaly detection in time

series data. The proposed approach fulfils all the requirements defined in the early stages of this work

and is able to detect anomalous behaviour in data of very different fields and, therefore, it is a contribution

for several possible domains of application of AD, such as energy and healthcare. In particular, the

growing need for monitoring the data gathered by the smart grid (e.g., consumption, production time

series) and wearable devices (e.g., beat rate, electrocardiogram time series), to give two examples from

very different fields, makes the contribution of this work even more relevant.

From the point of view of the author, one of the main contributions of this Thesis lies on the unsuper-

vised nature of the approach. Even though unsupervised learning is still much more challenging than

supervised learning, the proposed framework reveals a promising ability to learn expressive represen-

tations of data and, afterwards, to detect anomalous observations. The two detection strategies are

proven to perform well in different datasets and provide a straightforward way of finding data that do not

conform with normal behaviour.

This Thesis is built on top of several powerful ideas and models developed in the framework of dif-

ferent applications, such as Natural Language Processing, Speech Recognition and Image Processing,

which were not previously transferred and seamlessly integrated for tasks dealing with time series data.

One of the purposes of this Thesis was to unify concepts from these areas into a single framework. In

particular, to leverage the power of Bayesian deep learning models such as the variational autoencoder

for AD, recurrent neural networks, with their ability to capture the sequential structure of data, and even

sparsity that introduces prior knowledge of the anomalies rareness into the model training objective. On

top of the seq2seq model, attention was also introduced in the context of anomaly detection by means of

a novel variational self-attention mechanism, with its ability to improve the encoding-decoding process

and to provide a visualization scheme for the sequences.

Finally, another contribution of this Thesis are two scientific papers that comprise the main results

obtained with the datasets exploited, using two different detection strategies. The purpose of these

papers is to share the approach of this Thesis with the community of researchers and practitioners of

anomaly detection. These papers are introduced and attached in the Appendix A of this Thesis.

48

5.3 Future Work

The proposed framework for anomaly detection makes the quest for possible lines of future work.

First, even though the proposed model was applied univariate time series data, it is suitable to mul-

tivariate data as well, in which xt can be a dx-dimensional vector of observations. All the derivations

made for the proposed model allow this scenario. It is even suitable to be applied to other types of

sequential data beyond time series, such as videos and text, for tasks like detecting abnormal behaviour

in surveillance videos or detecting abnormal opinions or sentiment patterns in social networks.

Second, the philosophy behind the proposed model is to build an understanding of normality by

learning a normal data manifold that can be used as a reference for evaluating novel and unseen obser-

vations. However, the concept of normal might be prone to change/drift over time. Dealing with concept

drift is also a subject that can be addressed in future work.

Third, the attention maps provided by the model show that sequences with different patterns exhibit

different attention maps. In particular, normal and anomalous sequences have different attention maps.

This result can reveal the usefulness of the attention maps for detection. A possible line of future work

would be to use the attention maps as a feature map for classification, in the same fashion as other

approaches that compute the time series spectrogram and use it to solve anomaly detection as an

image classification problem, using convolutional neural networks for instance.

Forth, in this Thesis, anomaly detection was tackled from the point of view of classifying normal and

anomalous data. This is a common scenario in other works because AD is, by definition, a two-class

problem. However, the proposed approach can be extended to the multi-class case, to allow distinguish-

ing between anomalies. The representations learned are likely to be structured and expressive enough

to allow for such a scenario that is still to be done in unsupervised anomaly detection. So far, the repre-

sentations obtained for the several datasets already allow to take meaningful insights in their fields and

provide a visualization strategy to analyse the results.

Finally, in some applications of AD, labelled examples are available and, in that case, it makes sense

to use them to improve the model effectiveness. Therefore, an extension of the current work is to design

a semi-supervised setting that would allow to take possibly available labels into consideration. Moreover,

in this scenario, it would be interesting to exploit a transfer learning approach that would allow to transfer

knowledge between a source task where enough labels are available to a target task with fewer labels.

This extension would allow to leverage the features learned across different datasets in other similar

tasks.

49

50

Bibliography

Abadi, Martı́n; Agarwal, Ashish; Barham, Paul; Brevdo, Eugene; Chen, Zhifeng; Citro, Craig; Corrado,

Greg S.; Davis, Andy; Dean, Jeffrey; Devin, Matthieu; Ghemawat, Sanjay; Goodfellow, Ian; Harp,

Andrew; Irving, Geoffrey; Isard, Michael; Jia, Yangqing; Jozefowicz, Rafal; Kaiser, Lukasz; Kudlur,

Manjunath; Levenberg, Josh; Mané, Dandelion; Monga, Rajat; Moore, Sherry; Murray, Derek; Olah,

Chris; Schuster, Mike; Shlens, Jonathon; Steiner, Benoit; Sutskever, Ilya; Talwar, Kunal; Tucker, Paul;

Vanhoucke, Vincent; Vasudevan, Vijay; Viégas, Fernanda; Vinyals, Oriol; Warden, Pete; Wattenberg,

Martin; Wicke, Martin; Yu, Yuan, and Zheng, Xiaoqiang. TensorFlow: Large-scale machine learning

on heterogeneous systems, 2015. URL https://www.tensorflow.org/. Software available from

tensorflow.org.

Aleskerov, E.; Freisleben, B., and Rao, B. CARDWATCH: A Neural Network based Database Mining

System for Credit Card Fraud Detection. In Proceedings of the IEEE/IAFE 1997 Computational Intel-

ligence for Financial Engineering (CIFEr), pages 220–226, March 1997. doi: 10.1109/CIFER.1997.

618940.

An, Jinwon and Cho, Sungzoon. Variational Autoencoder based Anomaly Detection using Reconstruc-

tion Probability. SNU Data Mining Center, 2015.

Angiulli, Fabrizio and Pizzuti, Clara. Fast Outlier Detection in High Dimensional Spaces. In Elomaa,

Tapio; Mannila, Heikki, and Toivonen, Hannu, editors, Principles of Data Mining and Knowledge Dis-

covery, pages 15–27, Berlin, Heidelberg, 2002. Springer Berlin Heidelberg. ISBN 978-3-540-45681-0.

Arpit, Devansh; Zhou, Yingbo; Ngo, Hung, and Govindaraju, Venu. Why Regularized Auto-Encoders

learn Sparse Representation? In Balcan, Maria Florina and Weinberger, Kilian Q., editors, Pro-

ceedings of The 33rd International Conference on Machine Learning, volume 48 of Proceedings of

Machine Learning Research, pages 136–144, New York, New York, USA, 20–22 Jun 2016. PMLR.

URL http://proceedings.mlr.press/v48/arpita16.html.

Bahdanau, Dzmitry; Cho, Kyunghyun, and Bengio, Yoshua. Neural Machine Translation by Jointly Learn-

ing to Align and Translate. CoRR, abs/1409.0473, 2014. URL http://arxiv.org/abs/1409.0473.

Bahuleyan, Hareesh; Mou, Lili; Vechtomova, Olga, and Poupart, Pascal. Variational Attention for

Sequence-to-Sequence Models. CoRR, abs/1712.08207, 2017.

51

https://www.tensorflow.org/
http://proceedings.mlr.press/v48/arpita16.html
http://arxiv.org/abs/1409.0473

Barbará, Daniel; Li, Yi, and Couto, Julia. COOLCAT: An Entropy-based Algorithm for Categorical Clus-

tering. In Proceedings of the Eleventh International Conference on Information and Knowledge Man-

agement, CIKM ’02, pages 582–589, New York, NY, USA, 2002. ACM. ISBN 1-58113-492-4. doi:

10.1145/584792.584888. URL http://doi.acm.org/10.1145/584792.584888.

Bayer, J. and Osendorfer, C. Learning Stochastic Recurrent Networks. ArXiv e-prints, November 2014.

Bengio, Yoshua; Courville, Aaron C., and Vincent, Pascal. Unsupervised Feature Learning and Deep

Learning: A Review and New Perspectives. CoRR, abs/1206.5538, 2012. URL http://arxiv.org/

abs/1206.5538.

Bengio, Yoshua; Yao, Li; Alain, Guillaume, and Vincent, Pascal. Generalized Denoising Auto-encoders

As Generative Models. In Proceedings of the 26th International Conference on Neural Information

Processing Systems - Volume 1, NIPS’13, pages 899–907, USA, 2013. Curran Associates Inc. URL

http://dl.acm.org/citation.cfm?id=2999611.2999712.

Bengio, Yoshua; Chung, Junyoung; Kastner, Kyle; Dinh, Laurent; Goel, Kratarth, and Courville, Aaron C.

A Recurrent Latent Variable Model for Sequential Data. CoRR, abs/1506.02216, 2015a.

Bengio, Yoshua; Im, Daniel Jiwoong; Ahn, Sungjin, and Memisevic, Roland. Denoising Criterion for

Variational Auto-Encoding Framework. CoRR, abs/1511.06406, 2015b.

Boriah, Shyam; Chandola, Varun, and Kumar, Vipin. Similarity Measures for Categorical Data: A Com-

parative Evaluation. In In Proceedings of the eighth SIAM International Conference on Data Mining,

pages 243–254, 2008.

Bourlard, H. and Kamp, Y. Auto-association by Multilayer Perceptrons and Singular Value Decomposi-

tion. Biol. Cybern., 59[4-5):291–294, September 1988. ISSN 0340-1200. doi: 10.1007/BF00332918.

URL http://dx.doi.org/10.1007/BF00332918.

Bowman, Samuel R.; Vilnis, Luke; Vinyals, Oriol; Dai, Andrew M.; Józefowicz, Rafal, and Bengio, Samy.

Generating Sentences from a Continuous Space. CoRR, abs/1511.06349, 2015.

Chandola, Varun; Banerjee, Arindam, and Kumar, Vipin. Anomaly Detection: A Survey. ACM Comput.

Surv., 41[3):15:1–15:58, July 2009. ISSN 0360-0300. doi: 10.1145/1541880.1541882. URL http:

//doi.acm.org/10.1145/1541880.1541882.

Chen, Yanping; Keogh, Eamonn; Hu, Bing; Begum, Nurjahan; Bagnall, Anthony; Mueen, Abdullah, and

Batista, Gustavo. The UCR Time Series Classification Archive, July 2015. www.cs.ucr.edu/~eamonn/

time_series_data/.

Cho, Kyunghyun; van Merrienboer, Bart; Gülçehre, Çaglar; Bougares, Fethi; Schwenk, Holger, and Ben-

gio, Yoshua. Learning Phrase Representations using RNN Encoder-Decoder for Statistical Machine

Translation. CoRR, abs/1406.1078, 2014. URL http://arxiv.org/abs/1406.1078.

Chollet, François. Keras. https://keras.io, 2015.

52

http://doi.acm.org/10.1145/584792.584888
http://arxiv.org/abs/1206.5538
http://arxiv.org/abs/1206.5538
http://dl.acm.org/citation.cfm?id=2999611.2999712
http://dx.doi.org/10.1007/BF00332918
http://doi.acm.org/10.1145/1541880.1541882
http://doi.acm.org/10.1145/1541880.1541882
www.cs.ucr.edu/~eamonn/time_series_data/
www.cs.ucr.edu/~eamonn/time_series_data/
http://arxiv.org/abs/1406.1078
https://keras.io

Chorowski, Jan; Bahdanau, Dzmitry; Serdyuk, Dmitriy; Cho, KyungHyun, and Bengio, Yoshua. Attention-

Based Models for Speech Recognition. CoRR, abs/1506.07503, 2015.

Duchi, John; Hazan, Elad, and Singer, Yoram. Adaptive Subgradient Methods for Online Learning and

Stochastic Optimization. J. Mach. Learn. Res., 12:2121–2159, July 2011. ISSN 1532-4435. URL

http://dl.acm.org/citation.cfm?id=1953048.2021068.

Farhadi, Ali; Xie, Junyuan, and Girshick, Ross B. Unsupervised Deep Embedding for Clustering Analy-

sis. CoRR, abs/1511.06335, 2015. URL http://arxiv.org/abs/1511.06335.

Gamon, Michael. Graph-based Text Representation for Novelty Detection. In Proceedings of the First

Workshop on Graph Based Methods for Natural Language Processing, TextGraphs-1, pages 17–24,

Stroudsburg, PA, USA, 2006. Association for Computational Linguistics. URL http://dl.acm.org/

citation.cfm?id=1654758.1654762.

Garcı́a-Teodoro, P.; Dı́az-Verdejo, J.; Maciá-Fernández, G., and Vázquez, E. Anomaly-based Net-

work Intrusion Detection: Techniques, Systems and Challenges. Computers and Security, 28[1):

18 – 28, 2009. ISSN 0167-4048. doi: https://doi.org/10.1016/j.cose.2008.08.003. URL http:

//www.sciencedirect.com/science/article/pii/S0167404808000692.

Glorot, Xavier and Bengio, Yoshua. Understanding the Difficulty of Training Deep Feedforward Neural

Networks. In Teh, Yee Whye and Titterington, Mike, editors, Proceedings of the Thirteenth Interna-

tional Conference on Artificial Intelligence and Statistics, volume 9 of Proceedings of Machine Learn-

ing Research, pages 249–256, Chia Laguna Resort, Sardinia, Italy, 13–15 May 2010. PMLR. URL

http://proceedings.mlr.press/v9/glorot10a.html.

Goix, N. How to Evaluate the Quality of Unsupervised Anomaly Detection Algorithms? ArXiv e-prints,

July 2016.

Goodfellow, Ian; Pouget-Abadie, Jean; Mirza, Mehdi; Xu, Bing; Warde-Farley, David; Ozair, Sherjil;

Courville, Aaron, and Bengio, Yoshua. Generative Adversarial Nets. In Ghahramani, Z.; Welling,

M.; Cortes, C.; Lawrence, N. D., and Weinberger, K. Q., editors, Advances in Neural Information

Processing Systems 27, pages 2672–2680. Curran Associates, Inc., 2014. URL http://papers.

nips.cc/paper/5423-generative-adversarial-nets.pdf.

Goodfellow, Ian; Bengio, Yoshua, and Courville, Aaron. Deep Learning. MIT Press, 2016. http:

//www.deeplearningbook.org.

Graves, Alex. Generating Sequences With Recurrent Neural Networks. CoRR, abs/1308.0850, 2013.

Graves, Alex; Fernández, Santiago, and Schmidhuber, Jürgen. Bidirectional LSTM Networks for Im-

proved Phoneme Classification and Recognition. In Proceedings of the 15th International Conference

on Artificial Neural Networks: Formal Models and Their Applications - Volume Part II, ICANN’05,

pages 799–804, Berlin, Heidelberg, 2005. Springer-Verlag. ISBN 3-540-28755-8, 978-3-540-28755-

1. URL http://dl.acm.org/citation.cfm?id=1986079.1986220.

53

http://dl.acm.org/citation.cfm?id=1953048.2021068
http://arxiv.org/abs/1511.06335
http://dl.acm.org/citation.cfm?id=1654758.1654762
http://dl.acm.org/citation.cfm?id=1654758.1654762
http://www.sciencedirect.com/science/article/pii/S0167404808000692
http://www.sciencedirect.com/science/article/pii/S0167404808000692
http://proceedings.mlr.press/v9/glorot10a.html
http://papers.nips.cc/paper/5423-generative-adversarial-nets.pdf
http://papers.nips.cc/paper/5423-generative-adversarial-nets.pdf
http://www.deeplearningbook.org
http://www.deeplearningbook.org
http://dl.acm.org/citation.cfm?id=1986079.1986220

Graves, Alex; Mohamed, Abdel-rahman, and Hinton, Geoffrey E. Speech Recognition with Deep Recur-

rent Neural Networks. CoRR, abs/1303.5778, 2013.

Graves, Alex; Wayne, Greg, and Danihelka, Ivo. Neural Turing Machines. CoRR, abs/1410.5401, 2014.

Guthrie, David; Guthrie, Louise; Allison, Ben, and Wilks, Yorick. Unsupervised Anomaly Detection.

In Proceedings of the 20th International Joint Conference on Artifical Intelligence, IJCAI’07, pages

1624–1628, San Francisco, CA, USA, 2007. Morgan Kaufmann Publishers Inc. URL http://dl.acm.

org/citation.cfm?id=1625275.1625538.

Hansen, Lars Kai; Højen-Sørensen, Pedro A. D. F. R., and Winther, Ole. Mean-field Approaches to

Independent Component Analysis. Neural Comput., 14[4):889–918, April 2002. ISSN 0899-7667.

doi: 10.1162/089976602317319009. URL http://dx.doi.org/10.1162/089976602317319009.

Hawkins, Simon; He, Hongxing; Williams, Graham, and Baxter, Rohan. Outlier Detection Using Repli-

cator Neural Networks. In Kambayashi, Yahiko; Winiwarter, Werner, and Arikawa, Masatoshi, editors,

Data Warehousing and Knowledge Discovery, pages 170–180, Berlin, Heidelberg, 2002. Springer

Berlin Heidelberg. ISBN 978-3-540-46145-6.

Hübner, Ronald; Steinhauser, Marco, and Lehle, Carola. A dual-stage two-phase model of se-

lective attention. Psychological Review, 117[3):759 – 784, 2010. ISSN 0033-295X. URL

http://search.ebscohost.com/login.aspx?direct=true&db=pdh&AN=2010-14834-002&lang=

pt-br&site=eds-live&scope=site.

He, Zengyou; Xu, Xiaofei, and Deng, Shengchun. Discovering cluster-based local outliers. Pat-

tern Recognition Letters, 24[9):1641 – 1650, 2003. ISSN 0167-8655. doi: https://doi.org/

10.1016/S0167-8655(03)00003-5. URL http://www.sciencedirect.com/science/article/pii/

S0167865503000035.

He, Zengyou; Deng, Shengchun, and Xu, Xiaofei. An Optimization Model for Outlier Detection in Cat-

egorical Data. In Huang, De-Shuang; Zhang, Xiao-Ping, and Huang, Guang-Bin, editors, Advances

in Intelligent Computing, pages 400–409, Berlin, Heidelberg, 2005. Springer Berlin Heidelberg. ISBN

978-3-540-31902-3.

Heller, Katherine A.; Svore, Krysta M.; Keromytis, Angelos D., and Stolfo, Salvatore J. One Class

Support Vector Machines for Detecting Anomalous Windows Registry Accesses. In In Proc. of the

workshop on Data Mining for Computer Security, 2003.

Hinton, G.; Deng, L.; Yu, D.; Dahl, G. E.; Mohamed, A.; Jaitly, N.; Senior, A.; Vanhoucke, V.; Nguyen, P.;

Sainath, T. N., and Kingsbury, B. Deep Neural Networks for Acoustic Modeling in Speech Recognition:

The Shared Views of Four Research Groups. IEEE Signal Processing Magazine, 29[6):82–97, Nov

2012. ISSN 1053-5888. doi: 10.1109/MSP.2012.2205597.

Hinton, Geoffrey and Salakhutdinov, Ruslan. Reducing the Dimensionality of Data with Neural Networks.

Science, 313[5786):504 – 507, 2006.

54

http://dl.acm.org/citation.cfm?id=1625275.1625538
http://dl.acm.org/citation.cfm?id=1625275.1625538
http://dx.doi.org/10.1162/089976602317319009
http://search.ebscohost.com/login.aspx?direct=true&db=pdh&AN=2010-14834-002&lang=pt-br&site=eds-live&scope=site
http://search.ebscohost.com/login.aspx?direct=true&db=pdh&AN=2010-14834-002&lang=pt-br&site=eds-live&scope=site
http://www.sciencedirect.com/science/article/pii/S0167865503000035
http://www.sciencedirect.com/science/article/pii/S0167865503000035

Hochreiter, Sepp and Schmidhuber, Jürgen. Long Short-Term Memory. Neural Comput., 9[8):1735–

1780, November 1997. ISSN 0899-7667. doi: 10.1162/neco.1997.9.8.1735. URL http://dx.doi.

org/10.1162/neco.1997.9.8.1735.

Karim, Fazle; Majumdar, Somshubra; Darabi, Houshang, and Chen, Shun. LSTM Fully Convolutional

Networks for Time Series Classification. CoRR, abs/1709.05206, 2017.

Kingma, Diederik. Variational inference and deep learning: A new synthesis. PhD thesis, University of

Amsterdam, 2017.

Kingma, Diederik P. and Ba, Jimmy. Adam: A Method for Stochastic Optimization. CoRR,

abs/1412.6980, 2014. URL http://arxiv.org/abs/1412.6980.

Kingma, Diederik P. and Welling, Max. Auto-Encoding Variational Bayes. CoRR, abs/1312.6114, 2013.

URL http://arxiv.org/abs/1312.6114.

Krizhevsky, Alex; Sutskever, Ilya, and Hinton, Geoffrey E. ImageNet Classification with Deep Convolu-

tional Neural Networks. In Proceedings of the 25th International Conference on Neural Information

Processing Systems - Volume 1, NIPS’12, pages 1097–1105, USA, 2012. Curran Associates Inc.

URL http://dl.acm.org/citation.cfm?id=2999134.2999257.

LeCun, Yann. Obstacle to Progress in Deep Learning & AI. https://engineering.nyu.edu/news/

revolution-will-not-be-supervised-promises-facebooks-yann-lecun-kickoff-ai-seminar,

2018.

LeCun, Yann; Bengio, Yoshua, and Hinton, Geoffrey E. Deep learning. Nature, 521[7553):436–444,

2015.

Lee, H. and Roberts, S. J. On-line novelty detection using the Kalman filter and extreme value theory.

In 2008 19th International Conference on Pattern Recognition, pages 1–4, Dec 2008. doi: 10.1109/

ICPR.2008.4761918.

Lei, Qi; Yi, Jinfeng; Vaculı́n, Roman; Wu, Lingfei, and Dhillon, Inderjit S. Similarity Preserving Repre-

sentation Learning for Time Series Analysis. CoRR, abs/1702.03584, 2017.

Liu, Yongli; Chen, Jingli; Wu, Shuai; Liu, Zhizhong, and Chao, Hao. Incremental fuzzy C medoids

clustering of time series data using dynamic time warping distance. PLOS ONE, 13[5):1–25, 05 2018.

doi: 10.1371/journal.pone.0197499. URL https://doi.org/10.1371/journal.pone.0197499.

Luong, Minh-Thang; Pham, Hieu, and Manning, Christopher D. Effective Approaches to Attention-

based Neural Machine Translation. CoRR, abs/1508.04025, 2015. URL http://arxiv.org/abs/

1508.04025.

Mahadevan, V.; Li, W.; Bhalodia, V., and Vasconcelos, N. Anomaly detection in crowded scenes. In 2010

IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pages 1975–1981,

June 2010. doi: 10.1109/CVPR.2010.5539872.

55

http://dx.doi.org/10.1162/neco.1997.9.8.1735
http://dx.doi.org/10.1162/neco.1997.9.8.1735
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1312.6114
http://dl.acm.org/citation.cfm?id=2999134.2999257
https://engineering.nyu.edu/news/revolution-will-not-be-supervised-promises-facebooks-yann-lecun-kickoff-ai-seminar
https://engineering.nyu.edu/news/revolution-will-not-be-supervised-promises-facebooks-yann-lecun-kickoff-ai-seminar
https://doi.org/10.1371/journal.pone.0197499
http://arxiv.org/abs/1508.04025
http://arxiv.org/abs/1508.04025

Malhotra, Pankaj; Vig, Lovekesh; Shroff, Gautam, and Agarwal, Puneet. Long Short Term Memory

Networks for Anomaly Detection in Time Series. In ., 2015.

Malhotra, Pankaj; Ramakrishnan, Anusha; Anand, Gaurangi; Vig, Lovekesh; Agarwal, Puneet, and

Shroff, Gautam. LSTM-based Encoder-Decoder for Multi-sensor Anomaly Detection. CoRR,

abs/1607.00148, 2016.

Malhotra, Pankaj; TV, Vishnu; Vig, Lovekesh; Agarwal, Puneet, and Shroff, Gautam. TimeNet: Pre-

trained deep recurrent neural network for time series classification. CoRR, abs/1706.08838, 2017.

Marques, Jorge S. Reconhecimento de Padrões - Métodos Estatı́sticos e Neuronais. IST Press, 2005.

Martinelli, Marco; Tronci, Enrico; Dipoppa, Giovanni, and Balducelli, Claudio. Electric Power System

Anomaly Detection Using Neural Networks. In Negoita, Mircea Gh.; Howlett, Robert J., and Jain,

Lakhmi C., editors, Knowledge-Based Intelligent Information and Engineering Systems, Berlin, Hei-

delberg, 2004. Springer Berlin Heidelberg. ISBN 978-3-540-30132-5.

Murphy, Kevin P. Machine Learning: A Probabilistic Perspective. The MIT Press, 2012. ISBN

0262018020, 9780262018029.

Ng, Andrew Y.; Rajpurkar, Pranav; Hannun, Awni Y.; Haghpanahi, Masoumeh, and Bourn, Codie.

Cardiologist-Level Arrhythmia Detection with Convolutional Neural Networks. CoRR, abs/1707.01836,

2017.

Parisotto, Emilio; Chaplot, Devendra Singh; Zhang, Jian, and Salakhutdinov, Ruslan. Global Pose

Estimation with an Attention-based Recurrent Network. CoRR, abs/1802.06857, 2018.

Park, Daehyung; Hoshi, Yuuna, and Kemp, Charles C. A Multimodal Anomaly Detector for Robot-

Assisted Feeding Using an LSTM-based Variational Autoencoder. CoRR, abs/1711.00614, 2017.

Pimentel, Marco A.F.; Clifton, David A.; Clifton, Lei, and Tarassenko, Lionel. A Review of Novelty Detec-

tion. Signal Processing, 99:215 – 249, 2014. ISSN 0165-1684. doi: https://doi.org/10.1016/j.sigpro.

2013.12.026. URL http://www.sciencedirect.com/science/article/pii/S016516841300515X.

Reddi, Sashank J.; Kale, Satyen, and Kumar, Sanjiv. On the Convergence of Adam and Beyond. In

International Conference on Learning Representations, 2018. URL https://openreview.net/forum?

id=ryQu7f-RZ.

Rezende, Danilo Jimenez; Mohamed, Shakir, and Wierstra, Daan. Stochastic Backpropagation and

Approximate Inference in Deep Generative Models. In Xing, Eric P. and Jebara, Tony, editors,

Proceedings of the 31st International Conference on Machine Learning, volume 32 of Proceedings

of Machine Learning Research, pages 1278–1286, Bejing, China, 22–24 Jun 2014. PMLR. URL

http://proceedings.mlr.press/v32/rezende14.html.

56

http://www.sciencedirect.com/science/article/pii/S016516841300515X
https://openreview.net/forum?id=ryQu7f-RZ
https://openreview.net/forum?id=ryQu7f-RZ
http://proceedings.mlr.press/v32/rezende14.html

Rifai, Salah; Vincent, Pascal; Muller, Xavier; Glorot, Xavier, and Bengio, Yoshua. Contractive Auto-

encoders: Explicit Invariance During Feature Extraction. In Proceedings of the 28th International Con-

ference on International Conference on Machine Learning, ICML’11, pages 833–840, USA, 2011. Om-

nipress. ISBN 978-1-4503-0619-5. URL http://dl.acm.org/citation.cfm?id=3104482.3104587.

Rumelhart, David E.; Hinton, Geoffrey E., and Williams, Ronald J. Learning representations by back-

propagating errors. Nature, 323:533–536, 1986.

Rush, Alexander M.; Chopra, Sumit, and Weston, Jason. A Neural Attention Model for Abstractive

Sentence Summarization. CoRR, abs/1509.00685, 2015.

Schölkopf, Bernhard; Platt, John C.; Shawe-Taylor, John C.; Smola, Alex J., and Williamson, Robert C.

Estimating the Support of a High-Dimensional Distribution. Neural Comput., 13[7):1443–1471, July

2001. ISSN 0899-7667. doi: 10.1162/089976601750264965. URL https://doi.org/10.1162/

089976601750264965.

Shyu, M-L; Chen, S-C; Sarinnapakorn, K., and Chang, L. A novel anomaly detection scheme based on

principal component classifier. In IEEE Foundations and New Directions of Data Mining Workshop, in

conjunction with ICDM’03, pages 171–179, 2003.

Siegelmann, Hava T. and Sontag, Eduardo D. Turing Computability with Neural Nets. Applied Mathemat-

ics Letters, 4[6):77 – 80, 1991. ISSN 0893-9659. doi: https://doi.org/10.1016/0893-9659(91)90080-F.

URL http://www.sciencedirect.com/science/article/pii/089396599190080F.

Sölch, Maximilian. Detecting anomalies in robot time series data using stochastic recurrent networks.

Master’s thesis, University of Toronto, 2015.

Sölch, Maximilian; Bayer, Justin; Ludersdorfer, Marvin, and van der Smagt, Patrick. Variational Inference

for On-line Anomaly Detection in High-Dimensional Time Series. CoRR, abs/1602.07109, 2016.

Song, X.; Wu, M.; Jermaine, C., and Ranka, S. Conditional Anomaly Detection. IEEE Transactions on

Knowledge and Data Engineering, 19[5):631–645, May 2007. ISSN 1041-4347. doi: 10.1109/TKDE.

2007.1009.

Srivastava, Nitish; Mansimov, Elman, and Salakhutdinov, Ruslan. Unsupervised Learning of Video

Representations using LSTMs. CoRR, abs/1502.04681, 2015.

Sutskever, Ilya. Training Recurrent Neural Networks. PhD thesis, University of Toronto, Toronto, Ont.,

Canada, Canada, 2013. AAINS22066.

Sutskever, Ilya; Vinyals, Oriol, and Le, Quoc V. Sequence to Sequence Learning with Neural Networks.

CoRR, abs/1409.3215, 2014. URL http://arxiv.org/abs/1409.3215.

Tieleman, Tijmen and Hinton, Geoffrey. Lecture 6.5-RMSProp: Divide the gradient by a running average

of its recent magnitude. Technical report, University of Toronto, 2012.

57

http://dl.acm.org/citation.cfm?id=3104482.3104587
https://doi.org/10.1162/089976601750264965
https://doi.org/10.1162/089976601750264965
http://www.sciencedirect.com/science/article/pii/089396599190080F
http://arxiv.org/abs/1409.3215

van der Maaten, Laurens and Hinton, Geoffrey. Visualizing Data using t-SNE . Journal of Machine

Learning Research, 9:2579–2605, 2008. URL http://www.jmlr.org/papers/v9/vandermaaten08a.

html.

Vaswani, Ashish; Shazeer, Noam; Parmar, Niki; Uszkoreit, Jakob; Jones, Llion; Gomez, Aidan N.;

Kaiser, Lukasz, and Polosukhin, Illia. Attention Is All You Need. CoRR, abs/1706.03762, 2017.

Villani, Cédric. The Wasserstein distances, pages 93–111. Springer Berlin Heidelberg, Berlin, Heidel-

berg, 2009. ISBN 978-3-540-71050-9. doi: 10.1007/978-3-540-71050-9 6. URL https://doi.org/

10.1007/978-3-540-71050-9_6.

Vincent, Pascal; Larochelle, Hugo; Bengio, Yoshua, and Manzagol, Pierre-Antoine. Extracting and

Composing Robust Features with Denoising Autoencoders. In Proceedings of the 25th International

Conference on Machine Learning, ICML ’08, pages 1096–1103, New York, NY, USA, 2008. ACM.

ISBN 978-1-60558-205-4. doi: 10.1145/1390156.1390294. URL http://doi.acm.org/10.1145/

1390156.1390294.

Wang, Fei; Jiang, Mengqing; Qian, Chen; Yang, Shuo; Li, Cheng; Zhang, Honggang; Wang, Xiaogang,

and Tang, Xiaoou. Residual Attention Network for Image Classification. CoRR, abs/1704.06904,

2017.

Wang, Zhaoxia; Tong, Victor Joo Chuan; Xin, Xin, and Chin, Hoong Chor. Anomaly Detection through

Enhanced Sentiment Analysis on Social Media Data. 2014 IEEE 6th International Conference on

Cloud Computing Technology and Science, pages 917–922, 2014.

Williams, G.; Baxter, R.; He, Hongxing; Hawkins, S., and Gu, Lifang. A comparative study of RNN

for outlier detection in data mining. In 2002 IEEE International Conference on Data Mining, 2002.

Proceedings., pages 709–712, Dec 2002. doi: 10.1109/ICDM.2002.1184035.

Xu, Haowen; Chen, Wenxiao; Zhao, Nengwen; Li, Zeyan; Bu, Jiahao; Li, Zhihan; Liu, Ying; Zhao,

Youjian; Pei, Dan; Feng, Yang; Chen, Jie; Wang, Zhaogang, and Qiao, Honglin. Unsupervised

Anomaly Detection via Variational Auto-Encoder for Seasonal KPIs in Web Applications. CoRR,

abs/1802.03903, 2018. URL http://arxiv.org/abs/1802.03903.

Xu, Kelvin; Ba, Jimmy; Kiros, Ryan; Cho, Kyunghyun; Courville, Aaron C.; Salakhutdinov, Ruslan; Zemel,

Richard S., and Bengio, Yoshua. Show, Attend and Tell: Neural Image Caption Generation with Visual

Attention. CoRR, abs/1502.03044, 2015.

Yeung, Dit-Yan and Ding, Yuxin. Host-based intrusion detection using dynamic and static behav-

ioral models. Pattern Recognition, 36[1):229 – 243, 2003. ISSN 0031-3203. doi: https://doi.org/

10.1016/S0031-3203(02)00026-2. URL http://www.sciencedirect.com/science/article/pii/

S0031320302000262.

58

http://www.jmlr.org/papers/v9/vandermaaten08a.html
http://www.jmlr.org/papers/v9/vandermaaten08a.html
https://doi.org/10.1007/978-3-540-71050-9_6
https://doi.org/10.1007/978-3-540-71050-9_6
http://doi.acm.org/10.1145/1390156.1390294
http://doi.acm.org/10.1145/1390156.1390294
http://arxiv.org/abs/1802.03903
http://www.sciencedirect.com/science/article/pii/S0031320302000262
http://www.sciencedirect.com/science/article/pii/S0031320302000262

Appendix A

Publications

This Thesis motivated two scientific papers, which were developed during its execution. They are at-

tached in this Appendix and are the following:

• João Pereira and Margarida Silveira. ”Unsupervised Anomaly Detection in Energy Time Series

Data using Variational Recurrent Autoencoders with Attention”. Accepted for Oral Presentation in

the 17th IEEE International Conference on Machine Learning and Applications (ICMLA-18).

• João Pereira and Margarida Silveira. ”Learning Representations from Healthcare Time Series

Data for Unsupervised Anomaly Detection”. Accepted for Oral Presentation in the IEEE Interna-

tional Conference on Big Data and Smart Computing (BigComp-19).

59

60

Unsupervised Anomaly Detection in Energy Time Series Data using
Variational Recurrent Autoencoders with Attention

João Pereira
Instituto Superior Técnico

University of Lisbon
Lisbon, Portugal

joao.p.cardoso.pereira@tecnico.ulisboa.pt

Margarida Silveira
Institute for Systems and Robotics, Instituto Superior Técnico

University of Lisbon
Lisbon, Portugal

msilveira@isr.tecnico.ulisboa.pt

Abstract—In the age of big data, time series are being gen-
erated in massive amounts. In the energy field, smart grids are
enabling a unprecedented data acquisition with the integration of
sensors and smart devices. In the context of renewable energies,
there has been an increasing interest in solar photovoltaic energy
generation. These installations are often integrated with smart
sensors that measure the energy production. Such amount of
data collected makes the quest for developing smart monitoring
systems that can detect anomalous behaviour in these systems,
trigger alerts and enable maintenance operations.

In this paper, we propose a generic, unsupervised and scalable
framework for anomaly detection in time series data, based
on a variational recurrent autoencoder. Furthermore, we in-
troduce attention in the model, by means of a variational self-
attention mechanism (VSAM), to improve the performance of the
encoding-decoding process. Afterwards, we perform anomaly de-
tection based on the probabilistic reconstruction scores provided
by our model.

Our results on solar energy generation time series show the
ability of the proposed approach to detect anomalous behaviour
in time series data, while providing structured and expressive
representations. Since it does not need labels to be trained, our
methodology enables new applications for anomaly detection in
energy time series data and beyond.

Index Terms—Anomaly Detection, Variational Recurrent Au-
toencoder, Attention, Solar Photovoltaic Energy

I. INTRODUCTION

One of the key assets of the smart grid is the data it collects.
The data gathered from smart meters in the grid makes it
possible to develop machine learning algorithms that can
analyse and monitor the data collected and detect anomalous
behaviour. With the integration of renewable energy sources
such as solar photovoltaic, it is important to ensure reliability,
security and correct operation of these systems in order
to promote good performances and a long lifetime of the
equipments.

The problem of finding patterns in data that do not conform
to expected or normal behaviour is often referred to as
Anomaly Detection (AD) [1]. Over time many approaches to
anomaly detection have been proposed. In particular, with the
progress made in deep learning, new frameworks to tackle the
challenges of anomaly detection were developed. However, a
significant amount of these approaches are based on supervised
machine learning models that require (big) labelled datasets
to be trained. In the context of applications such as energy,
annotating large datasets is difficult, time-consuming or even

too expensive, while it requires domain knowledge from
experts in the field. The lack of labels is, indeed, one of
the reasons why anomaly detection has been such a great
challenge for researchers and practitioners.

Furthermore, some of the proposed methods do not consider
the sequential nature of the data by assuming it is independent
in time. Smart grid data is often sequential by nature and
mostly time series and, hence, it is crucial to take into account
the order and structure of the data.

The main contributions of this work can be summarized as
follows:

• Unsupervised reconstruction-based model using a varia-
tional autoencoder with recurrent encoder and decoder;

• Variational self-attention mechanism to improve the
encoding-decoding process;

• Generic framework for anomaly detection in time series
data;

• Application to solar photovoltaic generation time series.

II. BACKGROUND

In this section, we revise autoencoders, recurrent neural net-
works, attention mechanisms and autoencoder-based anomaly
detection.

A. Autoencoder (AE)

Autoencoders [2, 3] are neural networks that aim to recon-
struct their input. They consist of two parts: an encoder and
a decoder. The encoder maps input data x ∈ Rdx to a latent
space (or code) z ∈ Rdz and the decoder maps back from
latent space to input space.

The autoencoders training procedure is unsupervised and it
consists of finding the parameters that make the reconstruction
x̂ as close as possible to the original input x, by minimizing a
loss function that measures the quality of the reconstructions
(e.g., mean squared error).

Typically the latent space z has a lower dimensionality than
the input space x and, hence, AEs are forced to learn com-
pressed representations of the input data. This characteristic
makes them suitable for dimensionality reduction (DR) tasks,
where they were proven to perform much better than other DR
techniques, such as Principal Component Analysis [4].

B. Variational Autoencoder (VAE)

The variational autoencoder [5, 6] is a deep generative
model that constrains the latent code z of the conventional
AE to be a random variable distributed according to a prior
distribution pθ (z), usually a standard Normal distribution,
Normal(0, I). Since the true posterior pθ(z|x) is intractable
for a continuous latent space z, the variational inference
technique is often used to find a deterministic approximation,
qφ(z|x), of the intractable true posterior. The parameters of
the approximate posterior qφ(z|x), often called the variational
parameters, are derived using neural networks (e.g., mean µz

and variance σ2
z, in the case of a Normal distribution).

Hence, the training objective of the VAE is to maximize
the evidence lower bound (ELBO) on the training data log-
likelihood. For a data point x, the evidence lower bound is
given by the following equation, where θ and φ are the encoder
and decoder parameters, respectively.

LELBO(θ, φ;x) = Eqφ(z|x)
[
log pθ(x|z)

]
−DKL

(
qφ(z|x)‖pθ(z)

)

The expectation in the equation above can be approximated
by Monte Carlo integration. The second term represents the
Kullback-Leibler divergence (DKL) between the approximate
posterior and the prior. The distribution for the likelihood is
usually a multivariate Normal or Bernoulli, depending on the
type of data being continuous or binary, respectively.

C. RNNs, LSTMs and Bi-LSTMs

Conventional (feed-forward) neural networks make the as-
sumption that data is independent in time. However, this as-
sumption does not hold for sequential data, such as time series.
Therefore, with time series data, recurrent neural networks
(RNNs) are often used.
RNNs are powerful sequence learners designed to capture the
temporal dependencies of the data by introducing memory.
They read a sequence of input vectors x = (x1,x2, ...,xT)
and, at each timestep t, they produce a hidden state ht. The
main feature of RNNs is a feedback connection that establishes
a recurrence mechanism that decides how the hidden states ht
are updated. In simple ”vanilla” RNNs, the hidden states ht
are updated based on the current input, xt, and the hidden state
at the previous timestep, ht−1, as ht = f(Uxt + Wht−1).
f is usually a tanh or sigmoid function and U and W are
weight matrices to learn, shared across timesteps. The hidden
state ht can, thus, be interpreted as a summary of the sequence
of input vectors up to timestep t. Given a sequence of hidden
states ht, a RNN can generate an output, ot, at every timestep
or produce a single output, oT , in the last timestep.

Despite the effectiveness of RNNs for modeling sequential
data, they suffer from the vanishing gradient problem, that
arises when the output at timestep t depends on inputs much
earlier in time. Therefore, long short-term memory networks
(LSTMs) [7, 8] were proposed to overcome this problem and
they do so by means of a memory cell and three gates. The
memory cell (ct) stores information about the input sequence
across timesteps. The gates are functions that control the
proportion of the current input to include in the memory cell

(it), the proportion of the previous memory cell to forget (ft)
and the information to output from the current memory cell
(ot). The memory updates, at each timestep t, are computed
as follows:

it = σ(Wiht−1 + Uixt) (1)
ft = σ(Wfht−1 + Ufxt) (2)
ot = σ(Woht−1 + Uoxt) (3)
ct = ft � ct−1 + it � tanh(Wcht−1 + Ucxt) (4)
ht = ot � tanh(ct) (5)

In the previous equations, it, ft, ot, ct and ht denote the input
gate, the forget gate, the output gate, the memory cell and the
hidden state, respectively. � denotes an element-wise product.
The other parameters are weight matrices to be learned, shared
between all timesteps.

LSTMs can still not integrate information from future
instants of time and, therefore, bidirectional long short-term
memory networks (Bi-LSTMs) [9] were proposed. Bi-LSTMs
exploit the input sequence, x, in both directions by means
of two LSTMs: one executes a forward pass and the other
a backward pass. Hence, two hidden states (

−→
h t and

←−
h t) are

produced for timestep t, one in each direction. These states act
like a summary of the past and the future. The hidden states
at similar timesteps are often aggregated into a unique vector
ht =

[−→
h t;
←−
h t

]
that represents the whole context around

timestep t, typically through concatenation.

D. Sequence to Sequence Models and Attention Mechanisms

The sequence to sequence (Seq2Seq) learning framework
[10, 11] is often linked with a class of encoder-decoder mod-
els, in which the encoder and decoder are RNNs. The encoder
reads a variable-length input sequence x = (x1,x2, ...,xTx) ∈
RTx×dx and converts it into a fixed-length vector represen-
tation (or context vector), z ∈ Rdz , and the decoder takes
this vector representation and converts it back into a variable-
length sequence y = (y1,y2, ...,yTy) ∈ RTy×dy . In general,
the learned vector representation corresponds to the final hid-
den state of the encoder network, which acts like a summary
of the whole sequence. A particular instance of a Seq2Seq
model is the Seq2Seq autoencoder, in which the input and
output sequences are aligned in time (x = y) and, thus, have
equal lengths (Tx = Ty).

Seq2Seq models have their weakness in tackling long se-
quences (e.g., long time series), mainly because the interme-
diate vector representation z does not have enough capacity
to capture information of the entire input sequence x.
Therefore, attention mechanisms were proposed to allow the
decoder to selectively attend to relevant encoded hidden states.
Several attention models were proposed in the past few years
[12, 13] and, in general, they operate as follows. At each
timestep t, during decoding, the attention model computes
a context vector ct obtained by a weighted sum of all the
encoder hidden states. The weights of the sum, aij , are
computed by a score function that measures the similarity
between the currently decoded hidden state, hd

t , and all the

encoded hidden states he = (he
1,h

e
2, ...,h

e
Tx
). Afterwards,

these scores are normalized using the softmax function, so that
they sum to 1 along the second dimension. The computation
of the weights and the context vectors can be described as
follows:

ati =
exp (score(hd

t ,h
e
i))∑Tx

j=1 exp (score(h
d
t ,h

e
j))

(6)

ct =

Tx∑

j=1

atjhj (7)

Attention mechanisms were developed mainly for natural
language processing (NLP) tasks and improved significantly
the performance of Seq2Seq models in applications such as
machine translation [12]. Even though attention has been
mostly applied to NLP problems involving text data, it is
suitable for other tasks dealing with other types of data such as
time series and videos. In fact, attention is a natural extension
of Seq2Seq models for any kind of sequential data.

E. Autoencoder-based Anomaly Detection

The main idea behind autoencoder-based anomaly detection
is to focus on what is normal, rather than modelling what
is anomalous. The autoencoder is trained to reconstruct data
with normal pattern (e.g., normal time series) by minimizing a
loss function that measures the quality of the reconstructions.
After training, the model is able to reconstruct well data with
normal pattern, while it fails reconstruct anomalous data, since
it never saw them during training. The detection is performed
using the reconstruction metrics (e.g., reconstruction error)
as anomaly score. In other words, the model learns a normal
data manifold and the distance between a given observation
and the normal data manifold is used to compute anomaly
scores, either in the latent space of representations, z, or in
the reconstructions space, x̂.

III. RELATED WORK

The work on anomaly detection in time series data has
increased significantly over the past few years and has bene-
fited from the progress made in deep learning. In particular,
Seq2Seq and autoencoder models have been applied with suc-
cess to time series AD tasks. Using this framework, Malhotra
et al. [14] proposed a prediction-based model based on LSTMs
and used the distribution of the prediction errors to compute
anomaly scores. However, this approach is not suitable for time
series affected by external factors not captured by sensors,
making them unpredictable. Later on, reconstruction-based
approaches were proposed to overcome this limitation, such as
[15], which try to reconstruct the input time series and use the
reconstruction errors as anomaly scores. After the introduction
of the variational autoencoder, Bayer and Osendorfer [16] used
variational inference and RNNs to model time series data and
introduced stochastic recurrent networks (STORNs), which
were subsequently applied to anomaly detection in robot time
series data [17]. An and Cho [18] proposed a method based on

a VAE and introduced a novel probabilistic anomaly score that
takes into account the variability of the data (the reconstruction
probability). Recently, Park et al. [19] applied a LSTM-based
variational autoencoder to AD in robot assisted feeding data
and introduced a progress-based prior over the latent variables.
Finally, Xu et al. [20] applied a VAE to AD in seasonal
key performance indicators (KPIs) time series and provided
a theoretical explanation for VAE-based anomaly detection.

IV. PROPOSED MODEL

In this section we describe our proposed approach, that
relies on two fundamental stages: the reconstruction model
(autoencoder) and the detection strategy. Let X = {x(n)}Nn=1

denote a dataset composed of N independent sequences
of observations. Each sequence x(n) has T timesteps, i.e.
x(n) = (x

(n)
1 ,x

(n)
2 , ...,x

(n)
T), and each observation at timestep

t, x
(n)
t , is a dx-dimensional vector. Therefore, the dataset X

has dimensions (N,T, dx).

A. Variational Bi-LSTM Autoencoder

The model takes as input a sequence of observations x =
(x1,x2, ...,xT). We then apply a denoising autoencoding cri-
terion [21] that consists on adding noise n ∼ Normal(0,σ2

nI)
to the inputs and force the autoencoder to reconstruct the clean
version of the input, x, from the corrupted one, x̃. Since it is
a regularization technique, this phase is only active at training
time. The encoder is parametrized using a Bi-LSTM with tanh
activation that generates a sequence of hidden states in both
directions, forward −→ and backward ←−. The final encoder
hidden states of both passes are concatenated with each other
to produce the vector he

T =
[−→

h e
T ;
←−
h e
T

]
.

The prior distribution pθ(z) over the latent variables z is
defined as an isotropic multivariate Normal, i.e. pθ(z) =
Normal(0, I). The parameters of the approximate posterior -
the mean µz and the co-variance Σz = σ2

zI - are derived from
the final encoder hidden state he

T using two fully connected
layers with Linear and SoftPlus activations, respectively.
To simplify the implementation of the denoising criterion, we
adopted the same approach as Park et al. [19] and define the
approximate posterior given a corruption distribution around
x with a single Gaussian, i.e. q̃φ(z|x) ≈ qφ(z|x̃), instead
of a mixture of Gaussians as in [21]. The latent variables
are obtained by sampling from the approximate posterior,
z ∼ Normal(µz,σzI), using the re-parametrization trick
z = µz + σz � ε, where ε ∼ Normal(0, I) is an auxiliary
noise variable and � represents an element-wise product.

Furthermore, we integrate a special attention mechanism
in the reconstruction model, that we call Variational Self-
Attention Mechanism (VSAM). The self-attention model re-
ceives as input a sequence of encoded hidden states and
outputs a sequence of context vectors ct, with the same length
(T), each one of them computed as a weighted sum of all
the encoded hidden states. In detail, the mechanism works as
follows. First, the relevance of every pair of encoded hidden
states he

i and he
j is scored (eq. 8) using the scaled dot-

product similarity, employed in Transformer [22] (a neural

network model for NLP, based on a self-attention mechanism).
The use of the dot-product as relevance measure makes the
self-attention model more efficient than previous attention
mechanisms that need to learn a similarity matrix.

sij = score(he
i ,h

e
j) =

(he
i)
T
he
j√

dhe

(8)

In equation 8, dhe is the size of the encoder Bi-LSTM state.
Second, the attention weights aij are computed by normalizing
the scores over the second dimension, as in equation 9, where
at = (at1, at2, ..., atT). This normalisation ensures that, for
each timestep t,

∑T
j=1 atj = 1.

at = softmax(st) (9)

Finally, for deriving the new context-aware vector represen-
tations ct we adopted a variational approach. This choice
is motivated by the bypassing phenomenon pointed out by
Bahuleyan et al. [23]. In fact, if the decoder has a direct
and deterministic access to the encoder hidden states through
attention, the latent code z may not be forced to learn
expressive representations, since the self-attention mechanism
could bypass most of the information to the decoder. This
problem can be solved by applying to the context vectors
ct the same constraint applied to the latent variables of the
VAE, by modelling them as random variables. To do so, we
first compute deterministic context vectors, cdet

t =
∑T
j=1 atjhj

and then transform them using another layer, similarly to [23].
The prior distribution over the context vectors is defined as a
standard Normal, p(ct) = Normal(0, I), and the parameters of
the approximate posterior q̃aφ(ct|x), µct and Σct , are derived
in similar fashion to the latent variables z, including the di-
mensionality (dct = dz). The final context vectors are sampled
from the approximate posterior, ct ∼ Normal(µct ,Σct).

The decoder is also a Bi-LSTM with tanh activation that
receives, at each timestep t, a latent representation z, shared
across timesteps, and a context vector ct. Unlike other works
that use a Normal distribution for pθ(xt|z), we use a Laplace
distribution with parameters µxt and bxt . The practical im-
plication of this choice is that the training objective aims
to minimize an `1 reconstruction loss ∝ ‖xt − µxt‖1 rather
than an `2 reconstruction loss ∝ ‖xt − µxt‖22. The `1-norm
promotes sparse reconstruction errors. Such a choice is moti-
vated by the assumption that anomalous observations are rare
and sparse, which is, indeed, the case in several applications
of interest. The outputs of the decoder are the parameters
of the reconstructed distribution of the input sequence of
observations, µxt and bxt . These parameters are derived from
the decoder Bi-LSTM hidden states using two fully connected
layers with Linear and SoftPlus activations, respectively.
The loss function for a particular sequence x(n) is given by:

L(θ, φ;x(n)) = −Ez∼q̃φ(z|x(n)),ct∼q̃aφ(ct|x(n))

[
log pθ(x

(n)|z, c)
]

+ λKL

[
DKL

(
q̃φ(z|x(n))‖pθ(z)

)

+ η
T∑

t=1

DKL

(
q̃aφ(ct|x(n))‖p(ct)

)]

where λKL weights the reconstruction and KL losses and η
balances the attention KL loss and the latent space KL loss.
Figure 1 illustrates the proposed model.

Encoder
Bi-LSTM

−→
h e

1

←−
h e

1

−→
h e

2

←−
h e

2

−→
h e

3

←−
h e

3

−→
h e

T

←−
h e

T

+n +n +n +n

x1 x2 x3 xTInput sequence

• • •

• • •

µz

σz

z

z ∼ Normal(µz,Σz)

−→
h d

1

←−
h d

1

−→
h d

2

←−
h d

2

−→
h d

3

←−
h d

3

−→
h d

T

←−
h d

T

• • •

• • •

µx1
bx1

µx2
bx2

µx3
bx3

µxT
bxT

−→
h
−→−→d

1

←−
h
←−←−d

1

−→
h
−→−→d

2

←−
h
←−←−d

2

−→
h
−→−→d

3

←−
h
←−←−d

3

−→
h
−→−→d

T

←−
h
←−←−d

T

• • •

• • •

Decoder
Bi-LSTM

−→
h
−→−→e

1

←−
h
←−←−e

1

−→
h
−→−→e

2

←−
h
←−←−e

2

−→
h
−→−→e

3

←−
h
←−←−e

3

−→
h
−→−→e

T

←−
h
←−←−e

T

• • •

• • •

µz

σz

z

z ∼ Normal(

Variational Layer

µx1
bx1

µx2
bx2

µx3
bx3

µxT
bxTReconstruction xt ∼ Laplace(µxt

, bxt)

cdet
1 cdet

2 cdet
3 cdet

T

Variational
Self-Attention

Network

+n +n +n +n

a11 a12
a13

a1T

Linear

SoftPlus

µc1
Σc1

µc2
Σc2

µc3
Σc3

µcT ΣcT

c1 c2 c3 cT

cdet
1 cdet

2 cdet
3 cdet

T

a11 a12
aa1313

a1T

µc1
Σc1

µc2
Σc2

µc3
Σc3

µcT ΣcT

c1 c2 c3 cT ct ∼ Normal(µct ,Σct)

n ∼ Normal(0,σ2
nI)

Corruption
x̃ = x + n

Fig. 1. Variational Bi-LSTM Autoencoder with Variational Self-Attention.

B. Anomaly Detection

The anomaly detection strategy is based on the following
principle. The Variational Bi-LSTM Autoencoder with Atten-
tion is trained on normal sequences, so that it learns the normal
pattern of data. At test time, normal sequences are expected to
be well reconstructed whereas anomalous ones are not, since
the model has not seen anomalous data during training.

Unlike deterministic autoencoders, the proposed model
based on a VAE reconstructs the distribution parameters (mean
µx and diversity bx) of the input variable rather than the
input variable itself. Therefore, it is possible to use probability
measures as anomaly scores. One approach is to compute the
reconstruction probability, introduced by An and Cho [18],
that is an estimation of the reconstruction term of the VAE
loss function by Monte Carlo integration.

Ez∼qφ(z|x) [log p(x|z)] ≈
1

L

L∑

l=1

log p(x|zl)

The process can be described as follows. First, an input
sequence x is propagated through the encoder and the posterior
parameters µz and Σz are obtained in a fully deterministic
fashion. Then, L samples are drawn from an isotropic Gaus-
sian distribution with these parameters. Each sample zl is

propagated though the decoder that outputs the distribution pa-
rameters of the reconstruction. Afterwards, the log-likelihood
of the input sample x, given a latent code zl drawn from
the approximate posterior distribution is computed. Finally,
the reconstruction probability is averaged over all z samples.
Algorithm 1 summarizes the computation process.

Algorithm 1 Reconstruction Probability Score
Input: x ∈ RT×dx
Output: ReconstructionProbability ∈ RT
(µz,Σz)← Encoder(x)
for l = 1 to L do

zl ∼ Normal(µz,Σz)
(µlx,b

l
x)← Decoder(zl)

scorel ← log p(x|µlx,blx)
end for
ReconstructionProbability ← 1

L

∑L
l=1 score

l

return ReconstructionProbability

The anomaly score itself is the negative reconstruction prob-
ability, so that the lower the reconstruction probability, the
higher the anomaly score. There are several advantages of
using the reconstruction probability instead of a deterministic
reconstruction error which is commonly used in autoencoder-
based anomaly detection approaches. The first one is that
the reconstruction probability does not requires data-specific
detection thresholds, since it is a probabilistic measure. Using
such a metric provides a more intuitive way of analysing the
results. The second one is that the reconstruction probability
takes into account the variability of the data. Intuitively,
anomalous data has higher variance than normal data and,
hence, the reconstruction probability is likely to be lower for
anomalous examples. The idea of using the variability of data
for anomaly detection enriches the expressive power of the
proposed model relatively to conventional autoencoders. Even
in the case where normal and anomalous data can share the
same expected value, the variability is different and, thus,
provide an extra tool to distinguish anomalous examples from
normal ones. For comparison purposes we also compute a
(stochastic) reconstruction error (RE), given by equation 10.

REz∼qφ(z|x)(x) =
1

L

L∑

l=1

∥∥∥x− E
[
pθ (xl|zl)

]
︸ ︷︷ ︸

µxl

∥∥∥
1

(10)

V. TRAINING FRAMEWORK

A. Data

The energy data in this work is a dataset X of univariate
time series (dx = 1) of solar photovoltaic (PV) energy
generation from several residential installations. The training
data was obtained by selecting a subset X normal of 1430 daily
sequences with normal pattern (days without clouds and any
kind of anomaly, where the energy generated is as expected).
Samples were recorded each 15 min and, therefore, each
(daily) sequence as 96 observations. The solar PV curves have
a strong seasonality, with a predominant seasonal period of a

day. We divided our dataset of normal sequences into two
subsets - a training set X normal

train and a validation set X normal
val

- with a splitting ratio of 80/20, respectively. The data was
also normalised to the installed capacity, so that the range of
observed values lies in the interval [0, 1].

B. Modes

The proposed approach for anomaly detection can work
under the following two modes:

• Off-line Mode: Training is performed with non-
overlapping sequences of length T and the observations
within a sequence share a unique representation in the
latent space z. All the scores for an input window are
considered for detection and the score at a particular
timestep t in a window can depend on future observations
within the same window.

• On-line Mode: Training is executed using overlapping
sequences obtained with a sliding window with a width T
and a step size of 1. At test time, detection is performed
without considering observations of future time instants,
by feeding to the model a window of observations in
which the last point corresponds to the current timestep
t. The anomaly score at timestep t corresponds to the
score of the last observation within each sequence. In
this mode, for a long sequence with length L, L−T +1
windows are produced, each one of them having its
own representation in the z-space. Since these windows
overlap, the latent space will exhibit trajectories over
time.

C. Optimization and Regularization

The models were implemented using the Keras deep learn-
ing library for Python [24], running on top of TensorFlow [25].
Optimization was performed using AMS-Grad optimizer [26],
a variant of Adam [27], in mini-batches of size 200 (off-
line mode) and 10000 (on-line mode), during 1500 epochs.
The learning rate was 0.001. The full model has 274.958
parameters to optimize. We set the latent space dimensionality
(dz) and the context vectors dimensionality (dct) to 3. The
encoder and decoder Bi-LSTM both have 256 units, 128 in
each direction. The noise added at the input level for the
denoising autoencoding criterion has variance σ2

n = 0.1σ2
x. We

set the number L of Monte Carlo samples to 1 during training,
following the work of Kingma and Welling [5]. The gradients
were clipped by value with a clip value of 1.0. To prevent the
KL-divergence vanishing problem, we applied a KL-annealing
scheme [28] that consists on varying the weight λKL during
training. By doing so, λKL is initially close to zero in order to
allow accurate reconstructions in the early stages of training
and is gradually increased to promote smooth encodings and
diversity. The parameter η is 0.01. We also apply a sparsity
regularizer in the hidden layer of the encoder Bi-LSTM [29],
that penalizes the `1-norm of the activations with a weight of
10−8.
Training was done on a single NVIDIA GTX 1080 TI GPU

with 11GB of memory, in a machine with an 8th generation
i7 processor and 16GB of DDR4 RAM.

VI. EXPERIMENTS AND RESULTS

In this section, we present the results of the experiments ob-
tained with our proposed model. To illustrate the effectiveness
of our approach, a few examples of solar energy generation
curves representative of different patterns and behaviours
(Xtest) were annotated, such as a normal sequence used as
ground truth, a brief shading, a fault, a spike anomaly, an
example of a daily curve where snow covered the surface of
the PV panel and a sequence corresponding to a cloudy day.

We evaluate the training results using the training and
validation losses, presented in Table I.

TABLE I
TRAINING AND VALIDATION LOSSES.

Set Training
(
Xnormal

train

)
Validation

(
Xnormal

val

)

Loss −3.1457 −3.1169

The training and validation losses are similar, meaning that
the model is not over-fitting to the training data and is being
able to generalize to unseen (normal) sequences.

A. Anomaly Scores

Figure 2 shows some examples of solar PV generation daily
curves with different kinds of patterns and the corresponding
anomaly scores: the reconstruction probability (top bar) and
the reconstruction error (bottom bar), both obtained by Monte
Carlo integration using L = 512 samples.

0.0

0.5

1.0

E
n
er

g
y

Ground Truth Brief Shading

0

1

E
n
er

g
y

Inverter Fault Spike

0.0

0.5

1.0

E
n
er

gy

Snow Cloudy Day

Fig. 2. Anomaly scores for some representative sequences (off-line mode,
non-overlapping sequences with T = 96 timesteps).

B. Latent Space Analysis

The experiments were performed using a 3-dimensional
latent space (dz = 3). For visualization purposes, we reduced
the dimensionality of the latent space to 2D using Princi-
pal Component Analysis (PCA) and t-distributed Stochastic

Neighbour Embedding (t-SNE) [30]. Figure 3 represents the
latent space z of the training set containing only normal
sequences (X normal

train). The label corresponds to the time instant
of the last observation within each sequence.

Fig. 3. Latent space visualization of Xnormal
train in 2D via t-SNE (left) and

PCA (right). (on-line mode, training executed using overlapping sequences
with T = 32 timesteps).

The latent space shows evidence that the model is mapping
sequences aligned in time onto the same region of the z-space
and, more interestingly, it reveals a cyclic trajectory whose
period matches exactly the seasonal period of the solar PV
curves: one day. In other words, the model has learned the
seasonal property of the data without being told of it and using
training sequences with a length 32 < 96, shuffled during
training. Previous works have shown latent spaces with this
behaviour, even though without analysing it, until the recent
work of Xu et al. [20] that provided for the first time an
explanation for this effect that they called Time Gradient.

In the context of time series anomaly detection, it is
interesting to exploit the latent representations to find out how
the representations of anomalous data compare with the ones
of normal examples. Figure 4 shows the representations of the
sequences that we annotated. Since the variational latent space
is obtained by sampling from the approximate posterior, in this
plot we represent the mean µz = E

[
qφ(z|x)

]
space, which is

deterministically obtained from the encoder Bi-LSTM output.

Cloudy Day

Snow

Spike

Inverter Fault

Brief Shading

Normal

Fig. 4. Latent space visualization of Xtest in 2D via PCA (on-line mode,
training executed using overlapping sequences with T = 32 timesteps).

Figure 4 shows structured and expressive representations of
sequences with various patterns. The normal examples (green)
and the anomalous ones are represented differently in the
space and there is clear a deviation of anomalous windows
from the normal trajectory. The normal data have also slightly
different trajectories in the space mainly because even though
the curves have the same qualitative (normal) pattern, they are
shifted in time due to different locations of the installations
where the sun starts shining on the PV panel at different
moments and also due to different inclinations.

C. Attention Visualization

The Variational Self-Attention Mechanism learns to pay
more attention to particular encoded hidden states. Therefore,
the attention model produces a 2D map for each sequence,
with length T , that shows where the network is putting its
attention. Figure 5 shows the attention maps for different test
sequences with and without anomalies.

0 4 8 12 16 20 24

Input Timestep [h]

0

4

8

12

16

20

24

O
u
tp

u
t

T
im

es
te

p
[h

]

0 4 8 12 16 20 24

Time [h]

0.0

0.2

0.4

0.6

0.8

E
n
er

gy

0 4 8 12 16 20 24

Input Timestep [h]

0

4

8

12

16

20

24

O
u
tp

u
t

T
im

es
te

p
[h

]

0 4 8 12 16 20 24

Time [h]

0.0

0.2

0.4

0.6

0.8

E
n
er

gy

0 4 8 12 16 20 24

Input Timestep [h]

0

4

8

12

16

20

24

O
u
tp

u
t

T
im

es
te

p
[h

]

0 4 8 12 16 20 24

Time [h]

0.0

0.2

0.4

0.6

0.8

E
n
er

gy

0 4 8 12 16 20 24

Input Timestep [h]

0

4

8

12

16

20

24

O
u
tp

u
t

T
im

es
te

p
[h

]

0 4 8 12 16 20 24

Time [h]

0.0

0.2

0.4

0.6

0.8

E
n
er

gy

0 4 8 12 16 20 24

Input Timestep [h]

0

4

8

12

16

20

24

O
u
tp

u
t

T
im

es
te

p
[h

]

0 4 8 12 16 20 24

Time [h]

0.0

0.2

0.4

0.6

0.8

E
n
er

gy

0 4 8 12 16 20 24

Input Timestep [h]

0

4

8

12

16

20

24

O
u
tp

u
t

T
im

es
te

p
[h

]

10−3 10−2 10−1 100

Attention Weights

0 4 8 12 16 20 24

Time [h]

0.0

0.2

0.4

0.6

0.8

E
n
er

gy

Fig. 5. Attention maps for sequences with different patterns. The attention
weights are represented in a logarithmic scale.

The attention maps show evidence that the self-attention
model is producing context-aware representations, which can
be seen by the distribution of the attention weights in a small
window around the first diagonal of the maps. This result
supports the intuition that most of the temporal context of an
observation in a time series lies in a narrow window around it.
Furthermore, for different anomalies, the maps show different

distributions of the attention weights. In some cases, the self-
attention model is capturing dependencies between hidden
states far in time. This conclusion validates the proposed
reconstruction-based anomaly detection approach, since it tells
that the network struggles to reconstruct well anomalous
sequences while it tries to capture long-term dependencies in
those.

It is also possible to visualize the context vectors cdett in
the mean space µct . The visualization, shown in Figure 6,
was performed by reducing the dimensionality of µct to 2D
using PCA. The labels represent the corresponding time instant
t. Each context vector is computed as a weighted sum of
all the encoder hidden states, so each one of them combines
information from different time instants.

Fig. 6. Context vectors of the validation set Xnormal
val .

Figure 6 shows that context vectors aligned in time tend
to be roughly represented in the same region of the space,
while the mixed structure suggests that different sequences
lead to context vectors that combine the encoder hidden states
differently, using different attention weights.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we presented a generic, unsupervised and
scalable framework for anomaly detection in time series data
that can operate both off-line and on-line. Our approach
consists of a reconstruction model based on a variational
autoencoder. We parametrized the encoder and decoder with
recurrent neural networks to take into account the temporal de-
pendencies of time series data. We also proposed a variational
self-attention mechanism that aids the decoding process by
allowing the model to pay more attention to particular encoded
hidden states and, at the same time, provides a straightforward
visualization scheme for the sequences.

Our results show that the model is able to detect anomalous
patterns by using the probabilistic reconstruction metrics as
anomaly scores. Moreover, the attention maps show evidence
that the model changes its attention according to the kind
of pattern of the input sequence. In particular, it attends
differently depending on whether the sequence is normal or
anomalous. A future line of work can exploit the usefulness
of the attention maps for detection.

Furthermore, even though we applied the proposed model
to solar PV generation univariate time series, it is suitable to

multivariate data as well, in which x can be a dx-dimensional
vector of observations. Moreover, it can even be applied to
other types of sequential data beyond time series, such as text
and videos.

One of the major challenges of this work was the full
absence of labels that is, actually, a common scenario in
the context of real-world applications, such as energy. This
motivated the unsupervised framework for anomaly detection
that we proposed. The main advantage of following such an
approach is that it can be applied to a wide range of time
series data available. On the other hand, the main difficulty
that we found due to the lack of labels was evaluation,
since it is not possible to compute conventional classification
metrics under this scenario. In fact, evaluation metrics for
unsupervised anomaly detection algorithms, in the absence of
labels and ground truth, remains a challenging problem where
the literature is still scarce, even though some recent work has
been done on the subject [31].

In this work, we focused on assigning an anomaly score
to every observation in a sequence and not discriminating
between different anomalies. However, the proposed approach
can be extended to a multi-class framework, to allow distin-
guishing between anomalies. For this purpose, the detection
phase might take into account the representations learned in
the z-space, which reveal to be expressive enough to allow for
such a scenario.

Finally, in unsupervised anomaly detection, the concept of
normality turns out to be hard to define in formal terms and
might be prone to change/drift over time. Dealing with concept
drift is a subject that we intend to address in future work.

ACKNOWLEDGEMENT

This work was funded by FCT project UID/EEA/50009/2013.

REFERENCES

[1] V. Chandola, A. Banerjee, and V. Kumar, “Anomaly Detection: A
Survey,” ACM Comput. Surv., vol. 41, no. 3, pp. 15:1–15:58, Jul. 2009.
[Online]. Available: http://doi.acm.org/10.1145/1541880.1541882

[2] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning Repre-
sentations by Back-propagating Errors,” Nature, vol. 323, pp. 533–536,
1986.

[3] H. Bourlard and Y. Kamp, “Auto-association by Multilayer Perceptrons
and Singular Value Decomposition,” Biological Cybernetics, vol. 59,
no. 4, pp. 291–294, Sep 1988. [Online]. Available: https://doi.org/10.
1007/BF00332918

[4] G. Hinton and R. Salakhutdinov, “Reducing the Dimensionality of Data
with Neural Networks,” Science, vol. 313, no. 5786, pp. 504 – 507,
2006.

[5] D. P. Kingma and M. Welling, “Auto-Encoding Variational Bayes,”
CoRR, vol. abs/1312.6114, 2013. [Online]. Available: http://arxiv.org/
abs/1312.6114

[6] D. J. Rezende, S. Mohamed, and D. Wierstra, “Stochastic
Backpropagation and Approximate Inference in Deep Generative
Models,” in Proceedings of the 31st International Conference on
Machine Learning, ser. Proceedings of Machine Learning Research,
E. P. Xing and T. Jebara, Eds., vol. 32, no. 2. Bejing, China:
PMLR, 22–24 Jun 2014, pp. 1278–1286. [Online]. Available:
http://proceedings.mlr.press/v32/rezende14.html

[7] S. Hochreiter and J. Schmidhuber, “Long Short-Term Memory,” Neural
Comput., vol. 9, no. 8, pp. 1735–1780, Nov. 1997. [Online]. Available:
http://dx.doi.org/10.1162/neco.1997.9.8.1735

[8] A. Graves, “Generating Sequences With Recurrent Neural Networks,”
CoRR, vol. abs/1308.0850, 2013.

[9] A. Graves, S. Fernández, and J. Schmidhuber, “Bidirectional LSTM
Networks for Improved Phoneme Classification and Recognition,” in
Proceedings of the 15th International Conference on Artificial Neural
Networks: Formal Models and Their Applications - Volume Part II, ser.
ICANN’05. Berlin, Heidelberg: Springer-Verlag, 2005, pp. 799–804.
[Online]. Available: http://dl.acm.org/citation.cfm?id=1986079.1986220

[10] I. Sutskever, Q. V. Le, and O. Vinyals, “Sequence to Sequence Learning
with Neural Networks,” CoRR, vol. abs/1409.3215, 2014.

[11] K. Cho, B. van Merrienboer, Ç. Gülçehre, F. Bougares, H. Schwenk,
and Y. Bengio, “Learning Phrase Representations using RNN Encoder-
Decoder for Statistical Machine Translation,” CoRR, vol. abs/1406.1078,
2014.

[12] D. Bahdanau, K. Cho, and Y. Bengio, “Neural Machine Translation by
Jointly Learning to Align and Translate,” CoRR, vol. abs/1409.0473,
2014. [Online]. Available: http://arxiv.org/abs/1409.0473

[13] M. Luong, H. Pham, and C. D. Manning, “Effective Ap-
proaches to Attention-based Neural Machine Translation,” CoRR, vol.
abs/1508.04025, 2015.

[14] P. Malhotra, L. Vig, G. Shroff, and P. Agarwal, “Long Short Term Mem-
ory Networks for Anomaly Detection in Time Series,” in Proceedings
of the 23rd European Symposium on Artificial Neural Networks, 2015.

[15] P. Malhotra, A. Ramakrishnan, G. Anand, L. Vig, P. Agarwal, and
G. Shroff, “LSTM-based Encoder-Decoder for Multi-sensor Anomaly
Detection,” CoRR, vol. abs/1607.00148, 2016.

[16] J. Bayer and C. Osendorfer, “Learning Stochastic Recurrent Networks,”
ArXiv e-prints, Nov. 2014.

[17] M. Sölch, J. Bayer, M. Ludersdorfer, and P. van der Smagt, “Variational
Inference for On-line Anomaly Detection in High-Dimensional Time
Series,” CoRR, vol. abs/1602.07109, 2016.

[18] J. An and S. Cho, “Variational Autoencoder based Anomaly Detection
using Reconstruction Probability,” CoRR, vol. 2015-2, 2015.

[19] D. Park, Y. Hoshi, and C. C. Kemp, “A Multimodal Anomaly Detector
for Robot-Assisted Feeding Using an LSTM-based Variational Autoen-
coder,” CoRR, vol. abs/1711.00614, 2017.

[20] H. Xu, W. Chen, N. Zhao, Z. Li, J. Bu, Z. Li, Y. Liu,
Y. Zhao, D. Pei, Y. Feng, J. Chen, Z. Wang, and H. Qiao,
“Unsupervised Anomaly Detection via Variational Auto-Encoder for
Seasonal KPIs in Web Applications,” CoRR, 2018. [Online]. Available:
http://arxiv.org/abs/1802.03903

[21] Y. Bengio, D. J. Im, S. Ahn, and R. Memisevic, “Denoising Criterion
for Variational Auto-Encoding Framework,” CoRR, vol. abs/1511.06406,
2015.

[22] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
L. Kaiser, and I. Polosukhin, “Attention Is All You Need,” CoRR, vol.
abs/1706.03762, 2017.

[23] H. Bahuleyan, L. Mou, O. Vechtomova, and P. Poupart, “Variational At-
tention for Sequence-to-Sequence Models,” CoRR, vol. abs/1712.08207,
2017.

[24] F. Chollet, “Keras,” https://keras.io, 2015.
[25] M. Abadi et al., “ TensorFlow: Large-Scale Machine Learning on

Heterogeneous Systems,” 2015, software available from tensorflow.org.
[Online]. Available: https://www.tensorflow.org/

[26] S. J. Reddi, S. Kale, and S. Kumar, “On the Convergence of Adam and
Beyond,” in International Conference on Learning Representations,
2018. [Online]. Available: https://openreview.net/forum?id=ryQu7f-RZ

[27] D. P. Kingma and J. Ba, “Adam: A Method for Stochastic
Optimization,” CoRR, vol. abs/1412.6980, 2014. [Online]. Available:
http://arxiv.org/abs/1412.6980

[28] S. R. Bowman, L. Vilnis, O. Vinyals, A. M. Dai, R. Józefowicz, and
S. Bengio, “Generating Sentences from a Continuous Space,” CoRR,
vol. abs/1511.06349, 2015.

[29] D. Arpit, Y. Zhou, H. Ngo, and V. Govindaraju, “Why Regularized
Auto-Encoders learn Sparse Representation?” in Proceedings of The
33rd International Conference on Machine Learning, ser. Proceedings of
Machine Learning Research, M. F. Balcan and K. Q. Weinberger, Eds.,
vol. 48. New York, New York, USA: PMLR, 20–22 Jun 2016, pp. 136–
144. [Online]. Available: http://proceedings.mlr.press/v48/arpita16.html

[30] L. van der Maaten and G. Hinton, “Visualizing Data using t-SNE,”
Journal of Machine Learning Research, vol. 9, pp. 2579–2605, 2008.
[Online]. Available: http://www.jmlr.org/papers/v9/vandermaaten08a.
html

[31] N. Goix, “How to Evaluate the Quality of Unsupervised Anomaly
Detection Algorithms?” ArXiv e-prints, 2016.

Learning Representations from Healthcare Time Series Data
for Unsupervised Anomaly Detection

João Pereira
Instituto Superior Técnico

University of Lisbon
Lisbon, Portugal

joao.p.cardoso.pereira@tecnico.ulisboa.pt

Margarida Silveira
Institute for Systems and Robotics, Instituto Superior Técnico

University of Lisbon
Lisbon, Portugal

msilveira@isr.tecnico.ulisboa.pt

Abstract—The amount of time series data generated in Health-
care is growing very fast and so is the need for methods that
can analyse these data, detect anomalies and provide meaningful
insights. However, most of the data available is unlabelled and,
therefore, anomaly detection in this scenario has been a great
challenge for researchers and practitioners.
Recently, unsupervised representation learning with deep gener-
ative models has been applied to find representations of data,
without the need for big labelled datasets. Motivated by their
success, we propose an unsupervised framework for anomaly
detection in time series data. In our method, both representation
learning and anomaly detection are fully unsupervised. In ad-
dition, the training data may contain anomalous data. We first
learn representations of time series using a Variational Recurrent
Autoencoder. Afterwards, based on those representations, we
detect anomalous time series using Clustering and the Wasserstein
distance.
Our results on the publicly available ECG5000 electrocardio-
gram dataset show the ability of the proposed approach to
detect anomalous heartbeats in a fully unsupervised fashion,
while providing structured and expressive data representations.
Furthermore, our approach outperforms previous supervised and
unsupervised methods on this dataset.

Index Terms—Variational Recurrent Autoencoder, Represen-
tation Learning, Clustering, Electrocardiogram.

I. INTRODUCTION

Detecting anomalies in time series data is an important prob-
lem of interest in applications such as healthcare, energy and
cyber-security. Many Anomaly Detection (AD) approaches
have been proposed over time [1, 2]. However, most of these
approaches are based on supervised machine learning models
that require (big) labelled datasets to be trained. In applications
like healthcare, labels are often difficult to obtain, while the
annotation process is time-consuming and requires domain-
knowledge from experts in the field. Hence, the application of
supervised models is limited by this constraint.
Furthermore, some previous anomaly detection approaches do
not take into account the sequential nature of data by assuming
it is independent and identically distributed in time. When
dealing with time series data it is crucial to consider the
temporal dependencies of the data.
Recently, there is a renewed interest in unsupervised learning,
which is more and more foreseen to play an important role in
the future of machine learning [3].

In this work, we propose an unsupervised framework for
anomaly detection in sequential data, based on representa-
tion learning using a Variational Recurrent Autoencoder and
anomaly detection in the representation’s space via Clustering
and the Wasserstein distance [4].

This paper is organized as follows. We start by revising
Autoencoders, Variational Autoencoders and Recurrent Neural
Networks. Then, we present a summary of recent approaches
to anomaly detection in time series data. Afterwards, we
introduce our proposed representation learning model and
detection methodology. Finally, we present and analyse the
results obtained with our model in electrocardiogram (ECG)
time series.
Our contributions in this work can be summarized as:
• Unsupervised representation learning of time series data

through a Variational Recurrent Autoencoder;
• Latent space-based detection using Clustering and the

Wasserstein distance.

II. BACKGROUND

In this section, we revise Autoencoders, Variational Autoen-
coders and Recurrent Neural Networks, including Long Short-
Term Memory Networks.

A. Autoencoder (AE)

Autoencoders [5, 6] are neural networks trained in an
unsupervised fashion that aim to reconstruct their input. They
consist of two parts: an encoder and a decoder. The encoder
maps input data x ∈ Rdx to a latent code/representation
z ∈ Rdz and the decoder maps back from latent code to input
space.
Training is executed by minimizing a reconstruction loss and,
thus, by making the output of the decoder x̂ as close as
possible to the original input x.
Very often autoencoders are undercomplete, i.e. their latent
code z has a lower dimensionality than the input space x and,
hence, they are forced to learn compressed representations
of the input data. This characteristic makes them suitable
for dimensionality reduction (DR) tasks, where they were
proven to work much better than other DR techniques, such
as Principal Component Analysis [7].

B. Variational Autoencoder

The interest in autoencoders, and unsupervised learning
in general, was strongly revived by the introduction of the
variational autoencoder (VAE) [8, 9].
The variational autoencoder is a deep generative model that
adds a new constraint on the code z of the autoencoder. The
VAE assumes that the latent code z is a random variable dis-
tributed according to a prior distribution pθ (z), which is often
defined as a standard Normal distribution, N (0, I). However,
the true posterior pθ(z|x) is intractable for continuous latent
variables z. Therefore, variational inference is applied to
find a deterministic approximation qφ(z|x) of the intractable
true posterior. Hence, the inference problem is tackled by
solving an optimization one. The approximate posterior is
usually a multivariate Normal distribution, N (µz,Σz), whose
parameters are derived using neural networks.
The VAE training objective aims to maximize an evidence
lower bound (ELBO) on the training data log-likelihood given
by the following equation, where φ and θ are the encoder and
decoder parameters, respectively.

LELBO = Eqφ(z|x)
[
log pθ(x|z)

]
−DKL

(
qφ(z|x)‖pθ(z)

)
(1)

The distribution for the likelihood term is often a multivariate
Normal or Bernoulli, depending on the type of data being
continuous or discrete, respectively.
The expectation may be approximated using Monte Carlo inte-
gration by drawing L samples from the approximate posterior.

Ez∼qφ(z|x)[log pθ(x|z)] ≈
1

L

L∑

l=1

log pθ (x|zl) (2)

C. Recurrent Neural Networks

Feed-forward Neural Networks assume data is independent
in time. However, when dealing with sequential data such as
time series this assumption does not hold and, thus, recurrent
neural networks (RNNs) are often applied. Recurrent neural
networks are powerful sequence learners designed to model
the temporal dependencies of the data by introducing memory
into the network. They receive a sequence of input vectors
x = (x1,x2, ...,xT) and, at each timestep t, they compute a
hidden state ht. The key aspect about RNNs is a feedback
connection that builds a recurrence mechanism. This mecha-
nism decides how the hidden states ht are updated. In simple
”vanilla” RNNs, the hidden states are updated based on the
current input and the hidden state at the previous timestep,
ht = f(Uxt +Wht−1). The function f is usually a tanh or
sigmoid and U and W are weight matrices shared across
timesteps, to be learned. The hidden state ht acts like a
summary of the sequence of inputs already seen up to timestep
t. RNNs can (optionally) produce an output based on the
hidden state ht at every timestep or just a single output in
the last timestep T .
However, when dealing with sequences with long term depen-
dencies, RNNs suffer from the vanishing gradient problem.
This happens when the output at timestep t depends on inputs

much earlier in time. Long Short-Term Memory (LSTM)
networks [10, 11] are a variant of RNN proposed to overcome
this limitation.
LSTMs integrate a memory cell and three gates that control the
proportion of the current input to include in the memory cell
it, the proportion of the previous memory cell to forget ft and
the information to output from the current memory cell, ot.
The updates of the memory at each timestep t are computed
as follows:

it = σ(Wiht−1 + Uixt) (3)
ft = σ(Wfht−1 + Ufxt) (4)
ot = σ(Woht−1 + Uoxt) (5)
ct = ft � ct−1 + it � tanh(Wcht−1 + Ucxt) (6)
ht = ot � tanh(ct) (7)

In the previous equations, it, ft, ot, ct and ht denote the
input gate, the forget gate, the output gate, the memory cell,
and the hidden state. � denotes an element-wise product.The
other parameters are weight matrices to be learned, shared
between all timesteps.

Despite the success of LSTMs for sequence modeling, they
still can not integrate information from future timesteps. To
solve this problem, Bidirectional Long Short-Term Memory
networks (Bi-LSTMs) [12] were proposed. Bi-LSTMs exploit
the input sequence in both directions by means of two LSTMs:
one executes a forward pass and the other a backward pass. As
a result, two hidden states are produced at each timestep t, one
in each direction,

−→
h t and

←−
h t. Each one of these states acts

like a summary of the past and the future. By concatenating
both of them, a global hidden state ht that represents the whole
context around timestep t is obtained.

III. RELATED WORK

The problem of finding sequences (e.g., ECG heartbeats)
that do not conform with the normal pattern is often framed
as a time series anomaly detection (AD) task, which is a
particular instance of a classification problem (two-class). The
work on AD has increased significantly over the past few years
and has benefited from the progress made in the framework
of deep learning (DL). In healthcare applications dealing with
time series data in particular, the work on anomaly detection
has been mostly based on (supervised) deep neural network
models using either recurrent neural networks or convolutional
neural networks (CNNs). In this context, Ng et al. [13] applied
a 34-layer convolutional neural network for classification of
ECG time series. Vig et al. [14] used long short-term memory
networks for anomaly detection in ECG data. Malhotra et al.
[15] introduced TimeNet, a sequence to sequence autoencoder
model for time series feature extraction, and performed clas-
sification using a supervised classifier trained on the extracted
features. Other works try to mix different neural network mod-
els, such as Karim et al. [16] that proposed an architecture that
integrates both RNNs and CNNs for time series classification.
On the unsupervised learning side, the amount of work de-
veloped in the framework of anomaly detection in time series

data is less than the one exploiting supervised models and
the proposed approaches still do not yield impressive results.
However, recently, there has been an increasing interest in
adopting unsupervised learning models for anomaly detection,
mainly in the framework of representation learning. In this
line, Lei et al. [17] proposed a representation learning ap-
proach that converts time series of possibly unequal lengths to
a matrix form while preserving pair-wise similarities between
them and apply it to time series clustering and classification
tasks. Aytekin et al. [18] used a feed-forward autoencoder for
extracting representations of images and performed anomaly
detection using clustering.
All in all, even though some of the aforementioned works
attained state-of-the-art performances, the literature is still very
focused on supervised learning models that heavily rely on
good labels to be trained.

IV. PROPOSED MODEL

In this section, we present our proposed approach that is
based on two fundamental steps: representation learning and
detection. The main difference between our work and previous
approaches is that both representation learning and anomaly
detection are performed in an unsupervised fashion.

A. Representation Learning

Consider a dataset X = {x(n)}Nn=1 composed of N observed
sequences (e.g., time series), where each sequence n has length
T , x(n) =

(
x
(n)
1 ,x

(n)
2 , ...,x

(n)
T

)
, and each datapoint x

(n)
t is a

dx-dimensional vector.
The proposed representation learning model is a Variational
Recurrent Autoencoder that works as follows.
The model reads an input time series x(n) with T timesteps.
Afterwards, a local denoising criterion [19] is applied by
adding noise to the inputs:

x̃ ∼ p(x̃|x), p(x̃|x) = N (x|0,σ2
nI) (8)

This corruption process, at the input level, forces the model
to reconstruct the original input, x, from a corrupted version
of it, x̃.
The encoder is parametrized by a bidirectional long short-
term memory network of parameter φ that processes the input
time series and produces a sequence of hidden states in both
directions. The final hidden states of the forward (−→) and
the backward (←−) passes generated by the encoder Bi-LSTM
are, then, concatenated in a single vector heT =

[−→
h e
T ;
←−
h e
T

]
.

This global hidden state heT is a fixed-length vector represen-
tation/summary of the entire sequence x.
Similarly to Park et al. [20] we simplified the denoising crite-
rion by modelling the posterior distribution given a corruption
distribution around x with a single Gaussian, q̃φ(z|x) ≈
qφ(z|x̃).
The prior distribution over the latent variables, pθ(z), is
defined as an isotropic multivariate Normal distribution,
N (0, I). The parameters µz and Σz of the approximate pos-
terior distribution q̃φ(z|x) are derived from the final encoder

hidden state, heT , using two fully connected layers with Linear
and SoftPlus activations, respectively. The SoftPlus function
is used to ensure that the variance is parametrized as non-
negative and activated by a smooth function.
The latent variables z are sampled from the approximate
posterior and computed using the re-parametrization trick as
follows,

z = µz + σz � ε (9)

where ε ∼ N (0, I) is an auxiliary (external) noise variable
and � denotes an element-wise product.
The decoder (generative model) is another Bi-LSTM that
receives as input a sample z drawn from the approximate
posterior and outputs, at each timestep t, the parameters
of the reconstruction of the input variable x. The decoding
distribution pθ(xt|z) is defined as a multivariate Normal with
diagonal co-variance matrix, N (µxt ,Σxt).
Both the encoder and the decoder Bi-LSTMs are activated by
a tanh function.
The training objective is to minimize:

L(θ, φ;x(n)) = −Eq̃φ(z(n)|x(n))

[
log pθ(x

(n)|z(n))
]

+ λKLDKL

(
q̃φ(z

(n)|x(n))‖pθ(z(n)
)

(10)

We included a weight parameter λKL in order to adjust
the trade-off between the reconstruction term and the KL-
divergence term.
The expectation in the training objective is approximated by
Monte Carlo integration. The log-likelihood of a particular
sequence x(n) decomposes across timesteps:

log pθ
(
x(n)|z(n)

)
=

T∑

t=1

log pθ
(
x
(n)
t |z(n)

)
(11)

Since the prior on the latent variables is defined as an isotropic
multivariate Normal distribution, the KL-divergence term in
the training objective has a closed form solution, given by
equation 12, and does not require estimation.

DKL

(
qφ(z|x)‖pθ(z)

)
≈ 1/2

[
tr(Σz)− µTz µz − dx − log(|Σz|)

]

(12)
Figure 1 illustrates the proposed representation learning model.

B. Anomaly Detection

In this work, anomaly detection is performed on the repre-
sentations provided by the Variational Bi-LSTM Autoencoder
model. The representation learning model learns to map input
data sequences x with different patterns into different regions
of the space and, therefore, it is straightforward to use those
representations to distinguish between normal and anomalous
samples.

Given a set of latent representations, the goal of anomaly
detection is to find out whether a given representation is
normal or anomalous. For this purpose, we consider three dif-
ferent methodologies: detection via Clustering in the µz space(
µz = E

[
qφ(z|x)

])
, detection using a metric based on the

Wasserstein distance and detection using a supervised Support

Encoder
Bi-LSTM

−→
h e

1

←−
h e

1

−→
h e

2

←−
h e

2

−→
h e

3

←−
h e

3

−→
h e

T

←−
h e

T

+n +n +n +n

x1 x2 x3 xT

• • •

• • •

µz

σz

z

N (µz,σz)

−→
h d

1

←−
h d

1

−→
h d

2

←−
h d

2

−→
h d

3

←−
h d

3

−→
h d

T

←−
h d

T

• • •

• • •

µx1
Σx1

µx2
Σx2

µx3
Σx3

µxT
ΣxT

−→
h
−→−→d

1

←−
h
←−←−d

1

−→
h
−→−→d

2

←−
h
←−←−d

2

−→
h
−→−→d

3

←−
h
←−←−d

3

−→
h
−→−→d

T

←−
h
←−←−d

T

• • •

• • •

−→
h
−→−→e

1

←−
h
←−←−e

1

−→
h
−→−→e

2

←−
h
←−←−e

2

−→
h
−→−→e

3

←−
h
←−←−e

3

−→
h
−→−→e

T

←−
h
←−←−e

T

• • •

• • •

µz

σz

z

N (µz,σz)

Sampling

µx1
Σx1

µx2
Σx2

µx3
Σx3

µxT
ΣxT

xt ∼ N (µxt
,Σxt)

+n +n +n +n

Linear

SoftPlus

n ∼ N (0, σn)

Input sequence

Corruption
x̃ = x + n

Decoder
Bi-LSTM

Reconstruction

Fig. 1. Illustration of the proposed representation learning model: Variational
Bi-LSTM Autoencoder.

Vector Machine (SVM) with linear kernel. The latter is used
as a reference to compare the performance of unsupervised vs
supervised anomaly detection. Note that, in this work, anomaly
detection is approached as a two-class classification problem
that is not focused on distinguishing between anomalies.

1) Clustering: The detection approach based on clustering
consists on applying unsupervised clustering to the latent
representations in the approximate posterior mean space (µz)
and aims to find the clusters that best describe the normal
and anomalous classes of the data. The principle behind this
technique in rooted on the assumption that most data used
for training the representation learning model are normal and,
therefore, the representations of anomalous samples will lie in
a different region of the latent space. In other words, there will
be a cluster containing the predominant (normal) examples and
all the others will be represented far from those and assigned
to the cluster of anomalous examples.
For this technique we applied three different clustering al-
gorithms in the representations space: hierarchical clustering
[21], spectral clustering [22] and k-means++ [23]. The clus-
tering algorithms were set to find 2 clusters, one for each class
(normal and anomalous). The output of these algorithms is,
then, matched with the normal/anomalous classes by setting
the cluster with higher number of data points assigned to be
the normal one.

2) Wasserstein Distance: Since the model parametrizes
either the mean µz and variance σ2

z of the latent variables (ap-
proximate posterior parameters), in the framework of anomaly
detection, it makes sense to take into account the variability of
the latent representations, σ2

z, instead of just their expectation,
µz. This idea is motivated by the fact that even though the

representations of normal and anomalous samples in the latent
space might share the same mean, µz, the variability of
anomalous samples relatively to normal ones is likely to be
higher, as pointed out by Cho et al. [24]. For obtaining an
anomaly score, we compute the median Wasserstein distance
between a test sample ztest and NW other samples within
the test set of latent representations, so that the similarity
between the posterior distribution of a given sample and subset
of other samples is used as anomaly score. This methodology
works under the assumption often made in anomaly detection
problems that most data are normal. The process can be
described by equations 13 and 14.

W (ztest, zi)2 = ‖µztest − µzi‖22 + ‖Σ
1/2
ztest −Σ

1/2
zi ‖2F (13)

score(ztest) = median{W (ztest, zi)2}NWi=1 (14)

In equations 13 and 14, W denotes the Wasserstein distance
and the subscript 2 and F denote the `2-norm and the
Frobenius norm, respectively.

V. EXPERIMENTS

A. Data

We applied the proposed model to electrocardiogram (ECG)
time series data. The dataset is the ECG5000, which was
donated by Eamonn Keogh and Yanping Chen and is publicly
available in the UCR Time Series Classification archive [25].
This dataset contains a set of N = 5000 univariate time series
(dx = 1) with 140 timesteps (T = 140). Each sequence
corresponds to one heartbeat. Five classes are annotated,
corresponding to the following labels: Normal (N), R-on-T
Premature Ventricular Contraction (R-on-T PVC), Premature
Ventricular Contraction (PVC), Supra-ventricular Premature
or Ectopic Beat (SP or EB) and Unclassified Beat (UB).
In the original data source, the dataset is provided with a
splitting into two subsets: a training set with Ntrain = 500
sequences and a test set with Ntest = 4500 sequences. Both
the training and test sets contain all classes of data, meaning
that the training set contains both normal and anomalous data.
Moreover, the classes are highly imbalanced: the normal class
is the predominant one followed by the class with label R-
on-T PVC. For validation purposes, we divided the original
training dataset into two subsets - one for training the model
(Xtrain) and one for validation (Xval) - with a splitting ratio of
80/20, respectively. No further pre-processing was executed.
Figure 2 shows the density of each class per set.

B. Training Setup

All the models were implemented using the Keras deep
learning library [26], with TensorFlow backend.
Training was performed using AMS-Grad [27] optimiser, a
variant of Adam [28], with a learning rate of 0.001. Gradient
computation and weight updates are performed in mini-batches
of size 500 during 1500 epochs. We set the latent space dimen-
sionality, dz, to 5, corresponding to an encoding compression
ratio of 28. The encoder and the decoder Bi-LSTM both have
256 units in total, 128 in each direction. The noise added at

Fig. 2. Class densities per set.

the input level has a standard deviation σn = 0.8σx. We set
the number of Monte Carlo samples L to 1 during training,
following the work of Kingma and Welling [8]. To compute the
Wasserstein anomaly score we use NW = 4000. To promote
stability during training, the gradients were clipped by value
with a limit on their magnitude of 5.0. To prevent the KL-
divergence term vanishing problem [29], we adopted a KL-
annealing strategy in order to vary the weight λKL of the
KL-divergence term in the loss function (equation 10). By
doing so, the weight λKL is initially close to zero - to promote
accurate reconstructions of x in the early stages of training -
and gradually increased to encourage smooth encodings and
diversity.
Furthermore, we adopted a sparse regularisation criterion to
promote sparsity in the hidden layer of the Bi-LSTM encoder
[30], by applying a penalty on the `1-norm of the activations,
with a weight parameter of 10−7. The total number of param-
eters to optimize is 273.420.
Training was executed on a NVIDIA GTX 1080TI graphics
processing unit with 11GB of memory, in a machine with an
8th generation i7 processor and 16GB of DDR4 RAM.

VI. RESULTS

In this section, we present the results obtained with the
proposed approach. We analyse the representations learned by
the model and evaluate the anomaly detection results. All the
results reported are evaluated on the test set Xtest composed
of 4500 sequences.

A. Latent Space Analysis

Figure 3 shows the latent space of the entire test set (Xtest)
with 4500 sequences. Each datapoint is labelled with one of
the five possible classes annotated. For visualization purposes,
we reduced the dimensionality of the latent space from 5 to
2 dimensions using Principal Component Analysis (PCA) and
t-Distributed Stochastic Neighbour Embedding (t-SNE) [31].

For the t-SNE embedding, we set the perplexity parameter to
50.0 and the number of iterations to 2000.

Fig. 3. Latent space visualization of Xtest in 2D via PCA and t-SNE.

Figure 3 reveals a structured and expressive latent space. The
sequences (heartbeats) of the normal class, represented in
green, lie in a region of the latent space different from the
anomalous ones, while similar heartbeats are mapped onto
the same region of the space. Moreover, it is also clear that
different anomalies are represented in distinct regions of the
space. The anomalous heartbeats in blue and orange, which
refer to Premature Ventricular Contractions, are represented
close to each other. Interestingly, the anomaly with label ”R-
on-T PVC”, represented in orange, has a smaller cluster apart
from the larger one (top of the figure). This might be an
interesting result to be analysed by experts.

B. Anomaly Detection
The anomaly detection results are evaluated using Area

Under the Curve (AUC), Accuracy, Precision, Recall and
F1-score. These scores are weighted per-class. The process
of computing the scores for the different detection methods
proposed makes use of the anomaly labels available, but those
are employed only for evaluation purposes. Since the output of
a clustering algorithm might provide permuted labels, i.e. the
cluster assignments may be permuted between the normal and
anomalous classes, the assignment can be executed under the
assumption that most data are normal, by matching the cluster
with higher number of data points with the normal class.
In the methodology based on the Wasserstein distance, the
AUC is computed by building the receiver operating char-
acteristic (ROC) curve based on the false positive (FP) and
true positive (TP) rates obtained for all possible detection
thresholds, whereas the other metrics are computed for the
detection threshold that leads to the higher scores. For the
clustering approach, since it provides a hard classification
result rather than an anomaly score, the AUC is computed
for a ROC curve with the corresponding TP and FP rate.

In Table I we present the detection results evaluated on the
test set, Xtest, using different clustering algorithms and a linear
SVM. All results reported were averaged over 10 runs of both
the representation learning and detection models.

TABLE I
SUMMARY OF THE RESULTS OBTAINED WITH THE PROPOSED MODEL.

Metric Hierarchical Spectral k-Means Wasserstein SVM

AUC 0.9569 0.9591 0.9591 0.9819 0.9836

Accuracy 0.9554 0.9581 0.9596 0.9510 0.9843

Precision 0.9585 0.9470 0.9544 0.9469 0.9847

Recall 0.9463 0.9516 0.9538 0.9465 0.9843

F1-score 0.9465 0.9474 0.9522 0.9461 0.9844

The best unsupervised anomaly detection scores are empha-
sized in bold.
The Wasserstein distance-based anomaly metric yields the best
unsupervised anomaly detection score in terms of AUC. The
results obtained for the three clustering algorithms are roughly
identical. This fact supports the idea that the key challenge in
unsupervised anomaly detection is to learn good (expressive)
representations of data. This is the reason why this work is
strongly focused on representation learning.
Furthermore, the Wasserstein distance-based score outper-
forms clustering-based detection in terms of AUC and is
similar in terms of the other metrics. This result is expected
since this score is taking into account the variability of
the representations in the latent space, rather than just their
mean. The supervised Support Vector Machine performs very
well, while the unsupervised detection methods stay roughly
competitive. Anyway, all detection strategies attained relatively
high detection scores.

Other works have used the same dataset mainly in a
supervised multi-class classification framework, instead of

anomaly detection that is a two-class problem. Even though
both schemes can not be compared in general, since the dataset
is highly imbalanced, with a large predominance of the normal
and one of the anomalous classes (Figure 2), the multi-class
classification problem is almost degenerated in a two-class
one. Therefore, it is interesting to compare our method with
the results reported in other works that considered different
techniques. Table II summarizes the best scores obtained
using both supervised and unsupervised learning models in
several recent works and the best results for each metric are
emphasized in bold.

TABLE II
RESULTS OBTAINED ON THE ECG5000 DATASET.

Source S/Ua Model AUC Acc F1

Ours
S VRAE+SVM 0.9836 0.9843 0.9844
U VRAE+Clust/W 0.9819 0.9596 0.9522

Lei et al. [17] S SPIRAL-XGB 0.9100 − −

Karim et al. [16] S F-t
ALSTM-FCN − 0.9496 −

Malhotra et al. [33] S SAE-C − 0.9340 −
Liu et al. [34] U oFCMdd − − 0.8084

aSupervised/Unsupervised; − ≡ score not reported in the cited paper.

Most of the previous works that considered the same dataset
use supervised machine learning models, while just one
follows an unsupervised approach, up to the authors best
knowledge. Under the two-class approximation made above,
our unsupervised approach outperforms previous supervised
learning models in every score reported.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we proposed an unsupervised approach to
anomaly detection based on representation learning and latent
space-based detection. Not only does the proposed represen-
tation learning model does not require labels to be trained
but also the training data might contain anomalous data. The
ratio of anomalous vs normal data used for training can be
diverse, provided that most data are normal. The method can
even deal with ratios of about 40% anomalous data, as was the
case in this work. Since it does not depend on the existence of
anomaly labels, the proposed approach is suitable for a wide
range of applications where time series data are unlabelled,
such as healthcare.

Even though the proposed model is generic to be applied to
other types of sequential data, both univariate and multivariate,
in this work, we focused on healthcare time series data, since
it is an important field of application where the methodologies
are still very focused on supervised machine learning models.

The results obtained are very encouraging, showing that it
is possible to perform anomaly detection when no labels are
available. In fact, our fully unsupervised approach attained
results that compete with a conventional supervised learning
model (the SVM) and outperforms supervised and unsuper-
vised models recently proposed in other works. Nevertheless,

we think much work is still to be done to make unsupervised
learning better in anomaly detection.

Finally, in this work, we tackled anomaly detection from
the point of view of classifying normal and anomalous data.
We plan to extend this framework to the multi-class case,
to allow distinguishing between anomalies. We think the
representations learned are structured and expressive enough
to allow for such a scenario.

ACKNOWLEDGEMENT

This work was funded by FCT project UID/EEA/50009/2013.

REFERENCES

[1] V. Chandola, A. Banerjee, and V. Kumar, “Anomaly Detection: A
Survey,” ACM Comput. Surv., vol. 41, no. 3, pp. 15:1–15:58, Jul. 2009.
[Online]. Available: http://doi.acm.org/10.1145/1541880.1541882

[2] M. A. Pimentel, D. A. Clifton, L. Clifton, and L. Tarassenko, “A
Review of Novelty Detection,” Signal Processing, vol. 99, pp. 215 –
249, 2014. [Online]. Available: http://www.sciencedirect.com/science/
article/pii/S016516841300515X

[3] Y. LeCun, Y. Bengio, and G. Hinton, “Deep Learning,” Nature, vol. 521,
no. 7553, pp. 436–444, 5 2015.

[4] C. Villani, The Wasserstein distances. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2009, pp. 93–111. [Online]. Available: https:
//doi.org/10.1007/978-3-540-71050-9 6

[5] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning Repre-
sentations by Back-propagating Errors,” Nature, vol. 323, pp. 533–536,
1986.

[6] H. Bourlard and Y. Kamp, “Auto-Association by Multilayer Perceptrons
and Singular Value Decomposition,” Biological Cybernetics, vol. 59,
no. 4, pp. 291–294, Sep 1988. [Online]. Available: https://doi.org/10.
1007/BF00332918

[7] G. Hinton and R. Salakhutdinov, “Reducing the Dimensionality of Data
with Neural Networks,” Science, vol. 313, no. 5786, pp. 504 – 507,
2006.

[8] D. P. Kingma and M. Welling, “Auto-Encoding Variational Bayes,”
CoRR, vol. abs/1312.6114, 2013. [Online]. Available: http://arxiv.org/
abs/1312.6114

[9] D. J. Rezende, S. Mohamed, and D. Wierstra, “Stochastic
Backpropagation and Approximate Inference in Deep Generative
Models,” in Proceedings of the 31st International Conference
on Machine Learning, ser. Proceedings of Machine Learning
Research, E. P. Xing and T. Jebara, Eds., vol. 32. Bejing,
China: PMLR, 22–24 Jun 2014, pp. 1278–1286. [Online]. Available:
http://proceedings.mlr.press/v32/rezende14.html

[10] S. Hochreiter and J. Schmidhuber, “Long Short-Term Memory,” Neural
Comput., vol. 9, no. 8, pp. 1735–1780, Nov. 1997. [Online]. Available:
http://dx.doi.org/10.1162/neco.1997.9.8.1735

[11] A. Graves, “Generating Sequences With Recurrent Neural Networks,”
CoRR, vol. abs/1308.0850, 2013.

[12] A. Graves, S. Fernández, and J. Schmidhuber, “Bidirectional LSTM
Networks for Improved Phoneme Classification and Recognition,” in
Proceedings of the 15th International Conference on Artificial Neural
Networks: Formal Models and Their Applications - Volume Part II, ser.
ICANN’05. Berlin, Heidelberg: Springer-Verlag, 2005, pp. 799–804.
[Online]. Available: http://dl.acm.org/citation.cfm?id=1986079.1986220

[13] A. Y. Ng, P. Rajpurkar, A. Y. Hannun, M. Haghpanahi, and C. Bourn,
“Cardiologist-Level Arrhythmia Detection with Convolutional Neural
Networks,” CoRR, vol. abs/1707.01836, 2017.

[14] S. Chauhan and L. Vig, “Anomaly Detection in ECG Time Signals via
Deep Long Short-term Memory Networks,” 2015 IEEE International
Conference on Data Science and Advanced Analytics (DSAA), pp. 1–7,
2015.

[15] P. Malhotra, V. TV, L. Vig, P. Agarwal, and G. Shroff, “TimeNet: Pre-
trained Deep Recurrent Neural Network for Time Series Classification,”
CoRR, vol. abs/1706.08838, 2017.

[16] F. Karim, S. Majumdar, H. Darabi, and S. Chen, “LSTM Fully
Convolutional Networks for Time Series Classification,” CoRR, vol.
abs/1709.05206, 2017.

[17] Q. Lei, J. Yi, R. Vaculı́n, L. Wu, and I. S. Dhillon, “Similarity
Preserving Representation Learning for Time Series Analysis,” CoRR,
vol. abs/1702.03584, 2017.

[18] Ç. Aytekin, X. Ni, F. Cricri, and E. Aksu, “Clustering and Unsupervised
Anomaly Detection with L2 Normalized Deep Auto-Encoder Represen-
tations,” CoRR, vol. abs/1802.00187, 2018.

[19] Y. Bengio, D. J. Im, S. Ahn, and R. Memisevic, “Denoising Criterion
for Variational Auto-Encoding Framework,” CoRR, vol. abs/1511.06406,
2015.

[20] D. Park, Y. Hoshi, and C. C. Kemp, “A Multimodal Anomaly Detector
for Robot-Assisted Feeding Using an LSTM-based Variational Autoen-
coder,” CoRR, vol. abs/1711.00614, 2017.

[21] Y. Zhao, G. Karypis, and U. Fayyad, “Hierarchical Clustering
Algorithms for Document Datasets,” Data Mining and Knowledge
Discovery, vol. 10, no. 2, pp. 141–168, Mar 2005. [Online]. Available:
https://doi.org/10.1007/s10618-005-0361-3

[22] A. Y. Ng, M. I. Jordan, and Y. Weiss, “On Spectral Clustering: Analysis
and an Algorithm,” in Proceedings of the 14th International Conference
on Neural Information Processing Systems: Natural and Synthetic, ser.
NIPS’01. Cambridge, MA, USA: MIT Press, 2001, pp. 849–856.
[Online]. Available: http://dl.acm.org/citation.cfm?id=2980539.2980649

[23] D. Arthur and S. Vassilvitskii, “K-means++: The Advantages of
Careful Seeding,” in Proceedings of the Eighteenth Annual ACM-SIAM
Symposium on Discrete Algorithms, ser. SODA ’07. Philadelphia,
PA, USA: Society for Industrial and Applied Mathematics, 2007,
pp. 1027–1035. [Online]. Available: http://dl.acm.org/citation.cfm?id=
1283383.1283494

[24] J. An and S. Cho, “Variational Autoencoder based Anomaly Detection
using Reconstruction Probability,” CoRR, vol. 2015-2, 2015.

[25] Y. Chen, E. Keogh, B. Hu, N. Begum, A. Bagnall, A. Mueen, and
G. Batista, “The UCR Time Series Classification Archive,” July 2015,
www.cs.ucr.edu/∼eamonn/time series data/.

[26] F. Chollet, “Keras,” https://keras.io, 2015.
[27] S. J. Reddi, S. Kale, and S. Kumar, “On the Convergence of Adam and

Beyond,” in International Conference on Learning Representations,
2018. [Online]. Available: https://openreview.net/forum?id=ryQu7f-RZ

[28] D. P. Kingma and J. Ba, “Adam: A Method for Stochastic
Optimization,” CoRR, vol. abs/1412.6980, 2014. [Online]. Available:
http://arxiv.org/abs/1412.6980

[29] S. R. Bowman, L. Vilnis, O. Vinyals, A. M. Dai, R. Józefowicz, and
S. Bengio, “Generating Sentences from a Continuous Space,” CoRR,
vol. abs/1511.06349, 2015.

[30] D. Arpit, Y. Zhou, H. Ngo, and V. Govindaraju, “Why Regularized
Auto-Encoders learn Sparse Representation?” in Proceedings of The
33rd International Conference on Machine Learning, ser. Proceedings of
Machine Learning Research, M. F. Balcan and K. Q. Weinberger, Eds.,
vol. 48. New York, New York, USA: PMLR, 20–22 Jun 2016, pp. 136–
144. [Online]. Available: http://proceedings.mlr.press/v48/arpita16.html

[31] L. van der Maaten and G. Hinton, “Visualizing Data using t-SNE ,”
Journal of Machine Learning Research, vol. 9, pp. 2579–2605, 2008.
[Online]. Available: http://www.jmlr.org/papers/v9/vandermaaten08a.
html

[32] J. Xie, R. B. Girshick, and A. Farhadi, “Unsupervised Deep Embedding
for Clustering Analysis,” CoRR, vol. abs/1511.06335, 2015. [Online].
Available: http://arxiv.org/abs/1511.06335

[33] P. Malhotra, A. Ramakrishnan, G. Anand, and L. Vig, “LSTM-based
Encoder-Decoder for Multi-sensor Anomaly Detection,” CoRR, vol.
abs/1607.00148, 2016. [Online]. Available: http://arxiv.org/abs/1607.
00148

[34] Y. Liu, J. Chen, S. Wu, Z. Liu, and H. Chao, “Incremental Fuzzy C
Medoids Clustering of Time Series Data using Dynamic Time Warping
Distance,” PLOS ONE, vol. 13, no. 5, pp. 1–25, 05 2018. [Online].
Available: https://doi.org/10.1371/journal.pone.0197499

View publication statsView publication stats

https://www.researchgate.net/publication/330523197

	Declaration
	Acknowledgements
	Resumo
	Abstract
	List of Tables
	List of Figures
	List of Acronyms
	1 Introduction
	1.1 Motivation
	1.2 Anomaly Detection Overview
	1.3 Related Work
	1.4 Why Unsupervised Learning?
	1.5 Objectives & Requirements
	1.6 Thesis Outline

	2 Background & Theory
	2.1 Autoencoders
	2.1.1 Denoising Autoencoders
	2.1.2 Sparse Autoencoders
	2.1.3 Variational Autoencoders

	2.2 Recurrent Neural Networks
	2.2.1 Overview
	2.2.2 Training
	2.2.3 Backpropagation Through Time
	2.2.4 Why RNNs?
	2.2.5 Long Short-Term Memory Networks

	2.3 Sequence to Sequence Models
	2.4 Attention Mechanisms
	2.5 Autoencoder-based Anomaly Detection
	2.5.1 Related Work

	3 Proposed Approach
	3.1 Representation Learning
	3.1.1 Overview
	3.1.2 Model

	3.2 Anomaly Detection
	3.2.1 Reconstruction-based Detection
	3.2.2 Latent Space-based Detection
	3.2.3 Dimensionality of the Latent Space

	4 Experiments & Results
	4.1 Training and Detection Modes
	4.2 Solar Energy Generation Dataset: Results & Analysis
	4.2.1 Optimization and Regularization
	4.2.2 Anomaly Detection Results
	4.2.3 Latent Space Analysis
	4.2.4 Attention Visualization

	4.3 Electrocardiogram Dataset: Results & Analysis
	4.3.1 Optimization and Regularisation
	4.3.2 Anomaly Detection Results
	4.3.3 Latent Space Analysis

	4.4 Implementation, Hardware & Computational Efficiency
	4.5 Discussion

	5 Conclusions
	5.1 Lessons Learned & Final Remarks
	5.2 Summary of Contributions
	5.3 Future Work

	Bibliography
	A Publications

